
Divide and Conquer Divide and Conquer

※ Divide and Conquer

An iterative or incremental algorithm like insertion sort has the advantage of being
relatively simple to analyze and implement. However, it can be hard to find an algorithm
that achieves optimal running times in that model. A lot of algorithms that perform
really well are recursive in structure. In this section we introduce the divide and conquer

paradigm for algorithm design.

In divide and conquer, we implement the following strategy:

1. If the problem is small enough, we solve the problem directly.

2. If the problem is large, we

• Divide the problem into smaller subproblems

• Conquer the subproblems by solving them recursively

• Combine the subproblem solutions to form a solution for the original problem.

3.1 Mergesort

To formalize some of the ideas and notation we will be using, let’s start with a divide and
conquer algorithm for solving the sorting problem.

• Divide: If the array has two or more elements, divide it into two halves.

• Conquer: Sort each of the two halves by recursively calling mergesort on each of the
halves.

• Combine: Combine the two sorted halves into a sorted array of all the elements.
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Divide and Conquer 3.1 Mergesort

1 def merge(arr1, arr2):

2 n = len(arr1) + len(arr2)

3 [[Create new array A of length n]]

4 p1, p2 = 0, 0 # Pointers to the starting indices of arrays

5 while p1 < len(arr1) and p2 < len(arr2):

6 [[Choose the smaller of arr1[p1] and arr[p1]]]

7 [[Append the chosen element to A]]

8 [[Add 1 to the pointer from the chosen array]]

9 return A

Question 28. Suppose we call merge on two arrays whose combined length is =. Write
down the runtime of merge using Big-O notation.

1 def merge_sort(arr):

2 n = len(arr)

3 [[Split arr into two halves arr1 and arr2]]

4 arr1 = merge_sort(arr1)

5 arr2 = merge_sort(arr2)

6 return merge(arr1, arr2)

Question 29. Let )(=) be the total running time of the merge_sort as written above. On
the right of each line, write down the time complexity of each line. What is the total
runtime of merge_sort?
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Divide and Conquer 3.1 Mergesort

Question 30. Let’s assume that = is some power of 2. Solve the recurrence from above for
this case.

In general, divide and conquer algorithms can have their running times described by
recurrences in the following form:

)(=) = ⇡(=) + 0)(=/1) + ⇠(=). (18)
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Divide and Conquer 3.2 The Master Theorem

3.2 The Master Theorem

Coming up with the recurrence is the first part of analyzing recursive algorithms. In the
case of mergesort on an array whose size is a power of two, we were able to directly solve
for the recurrence. This is not always easy to do, and in this section we will meet the

master theorem which will give us a guide on how to analyze such algorithms.

3.2.1 Picturing the work in recursive algorithms

Question 31. Draw the recursion tree for the recurrence representing the runtime )(=) of
a call to mergesort, where the nodes are labeled by the cost of the nonrecursive part of the
function.
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Divide and Conquer 3.2 The Master Theorem

Question 32. Draw the recursion tree for the recurrence )(=) = 3)(=/4) + 2=
2.
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Divide and Conquer 3.2 The Master Theorem

3.2.2 The Master Theorem

We are now equipped with some intuition to think about the Master theorem.

Theorem 3.1 (Master theorem*). Let 0 > 0 and 1 > 1 be constants, and let 5 (=) be a
driving function that is defined and nonnegative on all sufficiently large reals. Define the
recurrence )(=) on = 2 N by

)(=) = 0)(=/1) + 5 (=). (19)

Then the asymptotic behavior of )(=) can be characterized as follows:

1. If there exists a constant & > 0 such that 5 (=) = $(=log
1
(0)�&),

then )(=) = ⇥(=log
1
0).

2. If there exists a constant : � 0 such that 5 (=) = ⇥(=log
1
(0) log:

=),
then )(=) = ⇥(=log

1
0 log:+1

=).

3. If there exists a constant & > 0 such that 5 (=) = ⌦(=log
1
(0)+&), and if 5 (=) satisfies the

regularity condition 0 5 (=/1)  2 5 (=) for some constant 2 < 1 and all sufficiently
large =,

then )(=) = ⇥( 5 (=)).

In each case, we are interested in comparing two functions.

• The watershed function: =log
1
0 , and

• the driving function: 5 (=).

Question 33. Use the master theorem to show that the running time for mergesort is
⇥(= log =).
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Divide and Conquer 3.2 The Master Theorem

Question 34. Solve the recurrence )(=) = 16)(=/4) + 7
p
=.

Question 35. Solve the recurrence )(=) = )(7=/8) + 16.

Question 36. Solve the recurrence )(=) = 3)(=/4) + = log =.

Question 37. Solve the recurrence )(=) = 4)(=/4) + 11= log2
=.
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Divide and Conquer 3.3 Integer multiplication

3.3 Integer multiplication

Problem (INTMUL).

Input: Two integers A, B with = digits.

Output: The product I = AB.

Recall the integer multiplication algorithm you learned in grade school.

Can we do better?

We can divide the inputs into two smaller integers with =/2 digits:

A = A1 ⇤ 10=/2 + A2

B = B1 ⇤ 10=/2 + B2

Question 38. Write down the product I with using the variables A1, A2, B1, B2. Let )(=) be
the time it takes to multiply two = digit integers. Write down a recurrence describing a
recursive algorithm to solve the product you wrote down.

Question 39. Solve the recurrence you derived from the previous problem.

27

-

-

n = 4

# Total of about 0Cail multiplications.

* Y X X Y

+ -

-

-

X10
4/2

= x 100 => 1500

= - -

v
= 1543 -> v. = 15 ~z

= 43

-L

s = 8627 S
.

= 86 Se = 27
-L

-
-

z= r - s = (v , . 10* + r2)(s ,
. 10

+
+ S2)

= r
,

s.. 10" + r
,

S ..
10 + res,

18 + res2

W W ~ ~

multiplications of integers of 1/2 digita

T(n) = 4 . T(u/) + 0(n)

n = 1 ,
b = 2

W = nloge *
= 12 f(u) = O(n)

1 Is 0(u) = Oln'") for some +30 ? eg .

= = 1
. or = 0 . 1

0 t = 0, 00000000001

=> T(n) = O(nz)



Divide and Conquer 3.3 Integer multiplication

We can use the following change of variables:

• D = A1 ⇤ B1

• E = A2 ⇤ B2

• F = (A1 + A2) ⇤ (B1 + B2)

Question 40. Write down the product I = A ⇤ B using the variables D , E ,F.

Question 41. Write down a recurrence for this version of the product where again, )(=)
is the time it takes to multiply two = digit integers. Solve the recurrence.
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Divide and Conquer 3.4 Strassen’s Algorithm

3.4 Strassen’s Algorithm

Suppose we want to multiply two square matrices each with size = by =. How fast can
we achieve this? Let’s start by looking at the matrix multiplication algorithm we learn in
school.

266666664

7 3 2 8
6 3 3 5
4 2 9 8
1 1 8 4

377777775

266666664

2 5 3 6
1 3 4 2
5 7 3 1
2 1 4 7

377777775
=

Question 42. What is the total number of multiplications we have to do in this case? What
is a lower bound on the time complexity?

 
�1 �2

�3 �4

!  
⌫1 ⌫2

⌫3 ⌫4

!
(20)

We will omit the details here, but Strassen’s breakthrough algorithm showed that there
was a way to recursively find the product of the full matrix. Instead of taking the product
of the = by = matrices, the solution can be written as a combination of 7 different products
of the submatrices �8 , ⌫8 .

Question 43. Write down and solve the recurrence for Strassen’s algorithm.
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Divide and Conquer 3.5 Quicksort

3.5 Quicksort

Quicksort is another divide and conquer sorting algorithm that is often preferred in
practice due to its small constants hiding inside the ⇥(= log =) expected running time.
Note that this is the expected running time, and in the worst case this algorithm can take
⇥(=2).

Here is the highlevel description for how quicksort works.

• Divide: Partition the input array into two subarrays based on a pivot element, such that
the left subarray is filled with elements smaller than the pivot, and the right subarray
is filled with elements larger than the pivot.

• Conquer: Call quicksort recursively on each of the halves.

• Combine: Combine the sorted subarrays and we are done!

1 def quick_sort(arr):

2 n = len(arr)

3 if n > 1:

4 # Partition the array around a pivot, whose index is q

5 q = partition(arr)

6 arrL = quick_sort(arr[0:q])

7 arrR = quick_sort(arr[q+1:n])

8 return arrL + [arr[q]] + arrR

9 else:

10 return arr

The "heavy lifting" of the algorithm is happening inside the partition function. A
sample python implementation is given below, but essentially what we are doing is using
the last element of the array as a pivot, and then deciding if each element is smaller or
larger than this pivot element.

1 def partition(arr):

2 pivot = arr[-1]

3 leftend = 0

4 for i in range(len(arr) - 1):

5 if arr[i] < pivot:

6 arr[leftend], arr[i] = swap(arr[leftend], arr[i])

7 leftend += 1

8 arr[leftend], arr[-1] = swap(arr[leftend], arr[-1])

9 return leftend, arr
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Divide and Conquer 3.5 Quicksort

Question 44. Write down the state of the input array

[5, 2, 3, 7, 8, 1, 6, 4] (21)

at the start of each iteration of the for loop in the partition function. Label the partition
variable using ? and the location of the leftend using ;.

0 1

2 3

4 5

6 7

Question 45. What is the worst case partitioning that could occur in a run of quicksort?
Write down the recurrence for this case and solve it to find the running time.
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Divide and Conquer 3.5 Quicksort

Question 46. Suppose that we have an input instance which partitions the array into two
halves at each recursive call. Write down the recurrence for this case and solve it to find
the running time.

An algorithm whose worst case runtime depends on the structure of the input is
susceptible to adversarial attacks. That is, someone who knows the inner workings of
the algorithm could force it to have a worst case running time every time. To avoid this,
we often use randomness in our algorithms. Let’s change our partition algorithm so that
instead of picking the rightmost element, it chooses a random element and places it on
the far right before running as usual.

To analyze the randomized version of quicksort, we will introduce some extra notation.
For an input array � with = elements, let I1, I2, . . . , I= be the = elements of � in sorted
order.

Question 47. Let � = [3, 2, 7, 4, 8]. Write down I1 through I5.

We will also use the shorthand /8 , 9 to represent the subset of elements {I8 , I8+1, . . . , I9}.

Question 48. Let � = [6, 2, 3, 9, 10, 5]. What is /2,5?
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Divide and Conquer 3.5 Quicksort

Let’s now analyze the running time. To do this, we start by finding the probability that
two elements will get compared in our algorithm.

Question 49. Let’s consider the two endpoint elements, I1 and I= . What needs to happen
in the partition function for the two elements to be compared? Alternatively, when do I1

and I= never get compared?

Question 50. Now consider two elements I8 and I9 such that 8 < 9. What is the probability
that these two elements get compared?

33

-

>
=>

a lot 56F- 47
& pivot

Never get compared !

Either z
,

or zu must be chosen as the pivot !

Else
, they never get compared

.

#obability in the
size of the array

--

The last chance for them to get compared is calling Quicksort on

Zi
,j

= =--/ size

#(-
/ &

= & unsorted Zi ,; ↑
↑ R

-

size



Divide and Conquer 3.5 Quicksort

Question 51. Show that the expected running time of quicksort is $(= log =). In your
analysis, use the indicator random variable

-89 =

(
1 if I8 is compared with I9

0 otherwise.
(22)

You may also need the following fact:

=’
:=1

1
:

= $(log =). (23)
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Divide and Conquer Lower bounds for sorting

※ Lower bounds for sorting

All the algorithms we have seen so far fall under the family of sorting algorithms called
comparison based sorting. In these algorithms, we try to find clever ways to minimize
the number of ways we compare a pair of elements. We were able to go from ⇥(=2) to
⇥(= log =), but can we do any better?

To see if we could, we will construct what is called a decision tree. This tree will
represent some sequence of comparisons that our algorithm will do in order to distinguish
between different permutations. For our sorting algorithm to be correct, we must be able
to handle every permutation of inputs that appear.

Each node in our binary tree will represent some comparison between a pair of ele-
ments, and the leaves will represent all the possible permutations that are possible for our
input array. The following figure is an example from the CLRS textbook.

A tree with # leaves will have a minimum height of log2 # , because log2 can be thought
of as the number of times # can be halved until we get to 1.

Question 52. How many leaves are in a decision tree for comparison based sorting? What
does this say about the minimum height of the tree?
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