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6.3 Elements of Dynamic Programming

Dynamic programming refers to the process of recursively breaking a problem into sub-
problems, then combining those solutions to create a solution for the main problem. We've
seen some examples of using dynamic programming, but when exactly should we choose
this technique? We will discuss two key properties about a problem that can suggest that
dynamic programming is a viable way to solve the problem.

6.3.1 Optimal Substructure

The first property is called optimal substructure. A problem exhibits optimal substructure
when the optimal solution contains within it optimal solutions to subproblems. This was
true for both the weighted scheduling problem and the rod cutting problem.

The following is a loose guide on how you might go about discovering that a problem
has this property.

B 1. Making a choice. At some point in the algorithm there is a choice to make. Making
the choice leaves one or more subproblems to be solved.

2. Decomposable problem. If the correct choice is made, the optimal solution can be
described by combining the solutions from the induced subproblems.

3. The subproblem solutions are optimal. We must also be careful to check that using
the solutions to subproblems directly are optimal.

Question 71. State the choices made during the weighted scheduling problem, what the
subproblems are, and why the solutions to them are optimal.
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Dynamic Programming 6.3 Elements of Dynamic Programming

Question 72. State the choices made during the rod cutting problem, what the subprob-
lems are, and why the solutions to them are optimal.
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Not every problem has this property!! Be careful that you are not misguided into
using dynamic programming when it isn’t applicable. Let’s look at two similar looking
problems to see this in action.

Problem (SHORTESTPATH).
INPUT: An unweighted graph G = (V, E) and the labels u, v of two vertices in G.
OUTPUT: A path from u to v consisting of the fewest edges.

Problem (LONGESTSIMPLEPATH).
INPUT: An unweighted graph G = (V, E) and the labels u, v of two vertices in G.

OUTPUT: A path from u to v consisting of as many edges in G as possible. The path
must be simple, meaning each egge can only be used once.
veytex
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Dynamic Programming 6.3 Elements of Dynamic Programming

Question 73. Draw example inputs and outputs for SHORTESTPATH and LONGESTSIM-
PLEPATH, where the graph G has 6 vertices. Use the same graph for both examples.
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Let’s first look at the SHORTESTPATH problem. Again, to identify optimal substruc-
ture, we want to make sure that the optimal solution is just a combination of optimal
solutions to smaller problems.

Suppose that we have the optimal path p from u to v in our graph. To check for optimal
substructure, we decompose our solution into a few pieces. In this case let’s split it into
two pieces by choosing a vertex w that is on this path. Let p; and p; be the paths from u
to w along p and w to v along p respectively.
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Question 74. Describe the two subproblems that p1 and p» are solutions to. Is it possible
that there is a better solution to these problems?
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Now let’s look at the LONGESTSIMPLEPATH problem. We want to check if this
problem has optimal substructure. To reiterate, this means that the solution to full problem
can be written as a composition of the solutions to subproblems.

Question 75. Consider an instance of the LONGESTSIMPLEPATH problem with the
following graph as input with labels g and t. What is the solution?
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Question 76. Show by counterexample that LONGESTSIMPLEPATH does not have the
optimal substructure property. In other words, the optimal solution cannot be described
by solutions to subproblems.
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Dynamic Programming 6.3 Elements of Dynamic Programming
6.3.2 Overlapping Subproblems

The second property ingredient we need in an optimization problem to apply dynamic
programming is having overlapping subproblems. When we think of breaking our
problem in to subproblems, sometimes the same subproblem is solved many different
times. If this is only repeated say one or two times, it doesn’t cause an issue for us.
However, the number of calls can easily blow up. Recall our tree that we drew in Question
69 that showed the number of overlapping calls we made to solve the rod cutting problem.

Question 77. Does the weighted scheduling problem have the overlapping subproblem
property? If so, write down a scenario where the same subproblem gets called twice.

' H c SC_I/\AU.LL CL—O
PCL) Wm\%i \/(L)—chlA&JUQ(P( ))7 /\\ %
/
° volue £ oe L"('? L wlw,if— e ia““ 3
O
[
2

@ MDJ& avt 4740 51224 516

&4 e Mstracss.

OV“&VlﬁPPD/\g,l,

55



Dynamic Programming 6.3 Elements of Dynamic Programming

There are two main ways that people deal with overlapping subproblems. We saw
these in the rod cutting example, the top-down approach (memoization) and the bottom-
up approach (tabulation). In both approaches, we are keeping track of solutions to
subproblems that we have solved already so that we don’t waste computation time to
resolve them.

Top-Down (Memoization): To implement an algorithm using memoization, first write
a recursive algorithm to solve your problem. The algorithm should be clear about what
the subproblems are and how we combine the solutions to the subproblems.

Question 78. Write down a recursive algorithm to solve the weighted scheduling problem.
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Now to create a memoized version of the algorithm, we will use an array initialized as
a global variable to store the solutions to our subproblems. In this step, it is important to
know how many subproblems we will have to deal with.

Question 79. For the weighted scheduling problem, how many possible subproblems are
there? Remember, this problem asks "for all events 1 through i, what is the maximum
value we can achieve?" for an input of i.
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Dynamic Programming 6.3 Elements of Dynamic Programming
Once the memo is defined, we split our function into two parts.
1. IF this subproblem has been solved: return the solution stored in the memo.

2. ELSE: solve the problem just like we did in the recursive version.

Question 80. Write down an algorithm to solve the weighted scheduling problem using

memoization.
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Bottom-Up (Tabulation): In the bottom up approach, instead of using a recursive
algorithm, we will instead iterate through our table from the bottom and build up the
solutions using the cells we have filled out so far. This was the way we solved the weighted

scheduling problem in the first place.

In practice, the bottom-up method outperforms the top-down approach especially
when you have a problem where every subproblem has to be solved at least once. First
of all, function calls can be expensive depending on your system, so you can accumulate
overhead from your recursive calls. The bottom-up approach also doesn’t need a large
external array to store the intermediate solutions. However, if your problem doesn’t
require looking at every subproblem for most inputs, then the top-down approach can be

faster in practice.

6.3.3 Pieces to identify

The following components are also extremely helpful when defining a dynamic program-

ming algorithm.

1. Subproblem domain: The space of possible subproblems to consider.

2. Memo table definition: The items we will be storing in our tables. Alternatively,

the name of solutions to subproblems.
3. Goal: The location of our solution in the table.
4. Initial values: Solutions to trivial subproblems to start building on.

5. Recurrence: A compact representation of the recursive function.

Question 81. Identify the above pieces in the weighted scheduling problem.

(. )m()bt‘{? can be 24[0/..,,V\j
2. W\WOU)—' ﬂ‘{_o()’f;b-‘D) ualwe— c«cL;W‘LL— ‘—u/ o rk\,s»}i \dzams

g 906\ ' I/I/Z&Wo@/‘>

Lf_ N Zmo (D): O CSCLx/;JuLL u/ Dovm'{s>

g S . max % \)[l/\\ ~ SLL\ULA(L Lp(v\)>/ schedule Ch'l)%_

58



Dynamic Programming 6.4 Truck Loading Problem
6.4 Truck Loading Problem

Problem (TRUCKLOADING).

INPUT: A truck that can hold boxes up to weight W, and a list {wq, wo, ..., w,} of
weights of 1 boxes to load. T
/T\

OUTPUT: Which boxes to load to achieve the maximum possible weight without
exceeding W.

Question 82. Write down an example instance of the truck loading problem. That is,
write down a viable input output pair.
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In the weighted scheduling problem and rod cutting, there was one way to generate
subproblems from the main problem. There are two ways to do so here, because there are
two main parameters to the problem. One way to create subproblems is like the weighted
scheduling problem, where we consider the first i items instead of all n items. The other
way is to reduce the capacity of the truck to something smaller and see what happens.

It’s important to consider both, because we can think of choosing to add the last item
to a truck to induce a new subproblem which uses the remaining items, and a smaller

truck instead. O g %—(EO] W=120, u=3
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Dynamic Programming 6.4 Truck Loading Problem

Question 83. Reason about whether or not this problem has the optimal substructure
property.

¢ What are a set of easy top level choices to make, which break the problem into multiple

subproblems? Remember, a subproblem must also be a valid instance of the main
problem!
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¢ If someone tells you the solution to this first choice, does the correct answer to the
subproblems build into the correct solution of the full problem?

\{a/ wé CAn Aift(/l’g SDLV& (L\L 'IV\AU%A sqL,PM,Li/,W\ NQ"’W /{ZLL—

['/]/w‘bb/ pvw& Lo bWe ‘nml Sb[,btrkb\" widlh  oue chwle .

60

'TL_(\/\)/ V\> >, The max (,_,(AQH— lmJﬁLL mA-l-p 'fw.clf. U/ caFAc«Lg
7



Dynamic Programming 6.4 Truck Loading Problem

Question 84. Using the above analysis, can you define a recursive algorithm that solves
the problem? This algorithm should not use a memo and will likely be inefficient.
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Question 85. Given your answer to the previous problem, does the truck loading prob-

lem also have overlapping subproblems? If yes, write down a scenario where the same
subproblem gets called twice.
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Dynamic Programming 6.4 Truck Loading Problem
Question 86. Identify the pieces of the dynamic programming algorithm.
&> Subproblem domain: The space of possible subproblems to consider.

_> (3) Memo table definition: The items we will be storing in our tables. Alternatively, the
name of solutions to subproblems.

- @ Goal: The location of our solution in the table.
1 @ Initial values: Solutions to trivial subproblems to start building on.

@ Recurrence: A compact representation of the recursive function.
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Dynamic Programming 6.4 Truck Loading Problem

The following is an example of a table you might have at the end of a dynamic program-
ming algorithm to solve TRUCKLOADING, with an instance where n = 3 with w; = 6,
w2:2,w3:_5andW:7. r

1 F

Remember, each cell memo[i, j] stores what the optimal solution is to an instance

where we use the first i items, with a truck that can have up to weight ;.
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Question 87. What is the runtime of the dynamic programming algorithm?

Mask Bl bl w/ stze Wn
- 0(W)

63



Dynamic Programming 6.5 Matrix Chain Multiplication

6.5 Matrix Chain Multiplication

Question 88. Suppose we have two matrices A with size p by g and B with g by . How
many multiplications do we need to compute their product AB?
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Question 89. Suppose we have three matrices such that the dimensions are

A%%BA == A:pXqg
@(%)C-_- AQ@C} —~ B:gXr

ﬁgsbdol—;vé/, = C:rXs.

What is the total number of multiplications we need if we compute (AB) first? What if we
compute (BC) first? p=C, 4 > 16000, v 4o, g=30

(Axe)x C Ax (Bx=0)
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Problem (MATRIXCHAIN).

INPUT: A sequence of matrices M1, M, . .., M, and alist of dimensions do, d1, d>, . . ., dy,
such that M; is size d;_1 by d;. M, T d,xd,

OUTPUT: What is the most efficient way to group the matrices to minimize the total

number of multiplications?
P (™, W, He) M)
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Question 90. Reason about whether or not this problem has the optimal substructure

property.

¢ What are a set of easy top level choices to make, which break the problem into multiple
subproblems? Remember, a subproblem must also be a valid instance of the main

problem!
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¢ If someone tells you the solution to this first choice, does the correct answer to the
subproblems build into the correct solution of the full problem?
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Question 91. Using the above analysis, can you define a recursive algorithm that solves
the problem? This algorithm should not use a memo and will likely be inefficient.
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Question 92. Given your answer to the previous problem, does the MATRIXCHAIN

problem also have overlapping subproblems? If yes, write down a scenario where the
same subproblem gets called twice.

A R fes Ao A
W 0 IECEPRICERT,

(M) (B&s0A) (DA | (Ayhahe)

/)

CAl\ (A?A‘fﬂg)

66



Dynamic Programming 6.5 Matrix Chain Multiplication

Question 93. Identify the pieces of the dynamic programming algorithm.
Subproblem domain: The space of possible subproblems to consider.

Memo table definition: The items we will be storing in our tables. Alternatively, the
name of solutions to subproblems.

Goal: The location of our solution in the table.

Initial values: Solutions to trivial subproblems to start building on.
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Recurrence: A compact representation of the recursive function.
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Dynamic Programming 6.5 Matrix Chain Multiplication

The following is an example of a table you might have at the end of a dynamic pro-
gramming algorithm to solve MATRIXCHALIN, for the following instance.

Each cell memo[i, j] stores what the optimal solution is to an instance where we
consider the sequence starting from matrix 7 and ending at matrix j.
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Dynamic Programming 6.5 Matrix Chain Multiplication

Question 94. Write down a bottom-up algorithm to solve the MATRIXCHAIN problem.
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Question 95. What is the runtime of the dynamic programming algorithm?
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