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6.6 Longest Common Subsequence

A strand of DNA consists of a string of molecules called bases, which can be one of
Gadenine, OLtO_SiII_G,rguanin , and thymine. If we use the first letter to represent each base,
we can express a strand of DNA as a string over the 4-element set {A, C, G, T}. We might

have two organisms whose DNA strands are Ve
™ § = ACTGCGTCAGCTGCAGCGTCGA
¢ S, = CAGCTGATCGTAGCTGATCG ApELE
APPLIcATON

There are a few ways one may decide how similar two strings like the above are. One
way is to find the longest common substring. Another way is to count the number of
characters we have to edit from string 1 to get string 2, also known as the edit distance.
There is a DP solution to find the edit distance, but we will not focus on this solution
today.

What we will attempt to find is the longest common subsequence between the two
strings. Don’t confuse this with the longest common substring! In the longest common

subsequence, the goal is to find a third string whose characters appear in the same order
in both S; and S».

Question 96. Verify that ACTGCGTAGCTGATCG is a valid subsequence of S1 and S».

—> S5 = ACTGCGTCAgZﬂ'TGCAGCGTCGA

—=  AZTECETAGCTCATYG

— 52 =CAGCTGATCGTAGCTGATCG
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Problem (LCS). 2
INPUT: Two sequences X with length m and Y with length n.
OUTPUT: The length of the maximum length common subsequence of X and Y.
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Dynamic Programming 6.6 Longest Common Subsequence

Question 97. Reason about whether or not this problem has the optimal substructure
property.
_» * Write down a concise statement for the “optimal solution” using the input parameters.

¢ What are a set of easy top level choices to make, which break the problem into multiple
subproblems? Remember, a subproblem must also be a valid instance of the main
problem!
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Dynamic Programming 6.6 Longest Common Subsequence

Question 98. Using the above analysis, write down a recursive algorithm that solves the
problem. This algorithm should not use a memo and will likely be inefficient.
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Question 99. Given your answer to the previous problem, does the LCS problem also have
overlapping subproblems? If yes, write down a scenario where the same subproblem gets
called twice.
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Dynamic Programming 6.6 Longest Common Subsequence

Question 100. Identify the pieces of the dynamic programming algorithm.

 —

Subproblem domain: The space of possible subproblems to consider.

Memo table definition: The items we will be storing in our tables. Alternatively, the

name of solutions to subproblems.
Goal: The location of our solution in the table.

©
&
€
(© Initial values: Solutions to trivial subproblems to start building on.

OrL v
Recurrence: A compact representation of the recursive function. ‘?
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Dynamic Programming

6.6 Longest Common Subsequence

The following is some python code to compute the LCS length in a bottom up fashion.

def LCSC(X, Y):
m, n = len(X), len(Y)

memo =

—>
_> prev =

# Table with [0:m, ®:n]. Stores the LCS of X[1:m], Y[1:n]
# Table with [1:m, 1:n].
# Stores the subproblem this solution builds out of.

for i in range(l, m + 1):

memo[i][0] = O @al& caseh .
for j in range(®, n + 1):

memo[0][j] = O

for i in range(l, m + 1):

for

j in range(l, n + 1):

if X[i] == Y[j]: —> cov
memo[i][j] memo[i_:\ll[j -1]1 +1
prev[il[j] = "%&" N\

elif memo[i - 1][j] >= memo[i, j - 1]:

memo[i][j] = memo[i - 1][j] + 1
prev[i][j] = "1" s o5
else:

memo[i][j - 1] + 1

“—

memo[i] [j]
prev[i][j]

return memo, prev

Question 101. Draw an example that corresponds to each of the branches in the if state-
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The following is an example table that you may have filled after the inputs X =

ABCBDAB and Y = BDCABA.
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Question 102. Fill out the cells that are empty in the table.

Question 103. Can you use the table above to reconstruct the LCS?
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