
Dynamic Programming 6.6 Longest Common Subsequence

6.6 Longest Common Subsequence

A strand of DNA consists of a string of molecules called bases, which can be one of
adenine, cytosine, guanine, and thymine. If we use the first letter to represent each base,
we can express a strand of DNA as a string over the 4-element set {�, ⇠ ,⌧,)}. We might
have two organisms whose DNA strands are

(1 = �⇠)⌧⇠⌧)⇠�⌧⇠)⌧⇠�⌧⇠⌧)⇠⌧�

(2 = ⇠�⌧⇠)⌧�)⇠⌧)�⌧⇠)⌧�)⇠⌧

There are a few ways one may decide how similar two strings like the above are. One
way is to find the longest common substring. Another way is to count the number of
characters we have to edit from string 1 to get string 2, also known as the edit distance.
There is a DP solution to find the edit distance, but we will not focus on this solution
today.

What we will attempt to find is the longest common subsequence between the two
strings. Don’t confuse this with the longest common substring! In the longest common
subsequence, the goal is to find a third string whose characters appear in the same order
in both (1 and (2.

Question 96. Verify that ACTGCGTAGCTGATCG is a valid subsequence of (1 and (2.

(1 = �⇠)⌧⇠⌧)⇠�⌧⇠)⌧⇠�⌧⇠⌧)⇠⌧�

�⇠)⌧⇠⌧)�⌧⇠)⌧�)⇠⌧

(2 = ⇠�⌧⇠)⌧�)⇠⌧)�⌧⇠)⌧�)⇠⌧

Problem (LCS).

INPUT: Two sequences - with length < and . with length =.

OUTPUT: The length of the maximum length common subsequence of - and ..

70

Dynamic Programming 6.6 Longest Common Subsequence

Question 97. Reason about whether or not this problem has the optimal substructure
property.

• Write down a concise statement for the “optimal solution” using the input parameters.

• What are a set of easy top level choices to make, which break the problem into multiple
subproblems? Remember, a subproblem must also be a valid instance of the main
problem!

71

Dynamic Programming 6.6 Longest Common Subsequence

Question 98. Using the above analysis, write down a recursive algorithm that solves the
problem. This algorithm should not use a memo and will likely be inefficient.

Question 99. Given your answer to the previous problem, does the LCS problem also have
overlapping subproblems? If yes, write down a scenario where the same subproblem gets
called twice.

72

Dynamic Programming 6.6 Longest Common Subsequence

Question 100. Identify the pieces of the dynamic programming algorithm.

Subproblem domain: The space of possible subproblems to consider.

Memo table definition: The items we will be storing in our tables. Alternatively, the
name of solutions to subproblems.

Goal: The location of our solution in the table.

Initial values: Solutions to trivial subproblems to start building on.

Recurrence: A compact representation of the recursive function.

73

Dynamic Programming 6.6 Longest Common Subsequence

The following is some python code to compute the LCS length in a bottom up fashion.

1 def LCS(X, Y):

2 m, n = len(X), len(Y)

3 memo = # Table with [0:m, 0:n]. Stores the LCS of X[1:m], Y[1:n]

4 prev = # Table with [1:m, 1:n].

5 # Stores the subproblem this solution builds out of.

6 for i in range(1, m + 1):

7 memo[i][0] = 0

8 for j in range(0, n + 1):

9 memo[0][j] = 0

10 for i in range(1, m + 1):

11 for j in range(1, n + 1):

12 if X[i] == Y[j]:

13 memo[i][j] = memo[i - 1][j - 1] + 1

14 prev[i][j] = "" "
15 elif memo[i - 1][j] >= memo[i, j - 1]:

16 memo[i][j] = memo[i - 1][j] + 1

17 prev[i][j] = """
18 else:

19 memo[i][j] = memo[i][j - 1] + 1

20 prev[i][j] = " "
21 return memo, prev

Question 101. Draw an example that corresponds to each of the branches in the if state-
ment.

74

Dynamic Programming 6.6 Longest Common Subsequence

The following is an example table that you may have filled after the inputs - =
�⌫⇠⌫⇡�⌫ and . = ⌫⇡⇠�⌫�.

9 0 1 2 3 4 5 6
8 H9 B D C A B A
0 G8

0 0 0 0 0 0 0
1 A " " " "

0 0 0 0 1 1
2 B - " -

0 1 1 1 1 2 2
3 C " " - " "

0 1 1 2 2 2
4 B - " " " -

0 1 1 2 2 3 3
5 D " - " " "

0 1 2 2 2 3
6 A " " " - " -

0 1 2 2 3 3 4
7 B - " " " -

0 1 2 2 3 4

Question 102. Fill out the cells that are empty in the table.

Question 103. Can you use the table above to reconstruct the LCS?

75

	Foundations 1 – Learning the Language
	Analyzing Algorithms
	Correctness
	Efficiency

	Characterizing Running Times
	O-notation (Informal)
	-notation (Informal)
	-notation (Informal)

	Foundations 2 – Asymptotic notation and Mathematical Preliminaries
	Formal Definitions
	O-notation
	-notation
	-notation
	o-notation

	Mathematical Preliminaries
	Sums
	Logarithms
	Floors and Ceilings
	Factorials
	Combinations
	Probability

	Divide and Conquer
	Mergesort
	The Master Theorem
	Picturing the work in recursive algorithms
	The Master Theorem

	Integer multiplication
	Strassen's Algorithm
	Quicksort

	Lower bounds for sorting
	Priority Queues and Heapsort
	Recursive Heapify
	Extract Max

	Linear Time Sorting

	Dynamic Programming
	The Scheduling Problem
	Rod Cutting
	Top-down Approach
	Bottom-up Approach
	Bottom-up Approach with Solution

	Elements of Dynamic Programming
	Optimal Substructure
	Overlapping Subproblems
	Pieces to identify

	Truck Loading Problem
	Matrix Chain Multiplication
	Longest Common Subsequence

