
Greedy Algorithms Greedy Algorithms

※ Greedy Algorithms

7.1 The Activity Selection Problem

In the last section, we used dynamic programming to efficiently prune the search space
of optimization problems. Though this is a powerful technique, sometimes it can still
be overkill, and simpler more efficient solutions can be designed. A greedy algorithm
always makes the choice the looks best at that particular moment, without thinking about
how the problem changing in the future might affect it.

We will start by looking at a variant of a familiar problem called the activity selection
problem.

Problem (ACTIVITYSELECTION).

INPUT: A set (= {01, 02, . . . , 0=} of = proposed activities that wish to reserve a
conference room. (is sorted by finish time.

OUTPUT: The maximum number of mutually compatible activities.

Question 104. Consider the following instance of activity selection. What is the correct
solution?

8 1 2 3 4 5 6 7 8 9 10 11
B8 1 3 0 5 3 5 6 7 8 2 12
58 4 5 6 7 9 9 10 11 12 14 16

Question 105. What is the difference between this problem and the weighted scheduling
problem?

76

Greedy Algorithms 7.1 The Activity Selection Problem

This problem can be solved using a dynamic programming approach. Let’s briefly
talk about why that is, by identifying optimal substructure. Let (89 be the set of activities
that start after activity 08 finishes, and that finish before activity 09 starts. Let �89 be the
maximum set of activities that can be scheduled in this range, and let’s say it includes
some activity 0: . We want to see if finding the maximal set of (8: and (:9 relate to the
solution to the full problem. In this case, if we let �8: = (8: \ �89 and �:9 = (8: \ �89 , we
can say that

|�89 | = |�8: | + |�:9 | + 1. (24)

Now that we identified the optimal substructure, we can design a dynamic program-
ming algorithm.

Question 106. Describe a dynamic programming algorithm to solve ACTIVITYSELEC-
TION.

1. Subproblem domain:

2. Memo definition:

3. Goal:

4. Base cases:

5. Recurrence:

77

Greedy Algorithms 7.1 The Activity Selection Problem

For some problems, there are simpler ways to solve the problem that allows us to
bypass computing the many subproblems. This is possible when a problem can be solved
just by considering the greedy choice.

Question 107. What is the greedy choice in the ACTIVITYSELECTION problem?

It turns out that repeatedly making the greedy choice in this problem yields the optimal
solution! Why does this work? Let’s state our result formally and try to prove it.

Theorem 7.1. Let (: be the set of activities that start after activity 0: finishes, and let 0< be
an activity in (: with the earliest finish time. Then 0< is included in some maximum-size
subset of mutually compatible activities of (: .

78

Greedy Algorithms 7.1 The Activity Selection Problem

Let’s design an iterative algorithm to solve this problem now that we have identified
the greedy choice. We simply need to keep adding the earliest finishing task, as we show
in the following python code snippet.

1 def greedy_activity_select(s, f, n):

2 # s is an array of start times

3 # f is an array of finish times

4 # n is the number of activities

5 A = [a[1]]

6 k = 1 # k records the last activity added

7 for i in range(2, n + 1):

8 if s[m] >= f[k]:

9 A.append(a[m])

10 k = m

11 return A

Question 108. What is the runtime of greedy_activity_select?

79

Greedy Algorithms 7.1 The Activity Selection Problem

There can be many possible greedy choices to be made for a problem, and not all of
them may yield the optimal solution. For each of the following, think about whether or
not they yield the optimal solution, and if not, describe a counter example that shows that
the greedy strategy does not work.

Question 109. Selecting the activity with the earliest starting time.

Question 110. Selecting the activity with the latest starting time.

Question 111. Selecting the shortest activity in the list.

80

Greedy Algorithms 7.2 Elements of the Greedy Strategy

7.2 Elements of the Greedy Strategy

There are two key properties that we need to identify to determine if the problem can be
solved by a greedy algorithm.

7.2.1 Greedy-Choice Property

The first is the greedy-choice property, which states that you can assemble a globally
optimal solution by making locally optimal (greedy) choices. We will often discover
candidates based on intuition, kind of like we did in the activity selection problem.

Additionally, we need to prove that a greedy choice at each step yields a globally
optimal solution. The typical way we will do this is to fix some globally optimal solution,
and examine it in the context of some subproblem. We then want to show that making
the greedy choice for this subproblem is not any worse than the globally optimal solution
that we chose.

7.2.2 Optimal Substructure

The second property is a familiar one. To reiterate, we say a problem exhibits optimal
substructure if an optimal solution to the problem contains within it optimal solutions to
subproblems. In the greedy setting, we can simplify this analysis by assuming that we
generated our subproblem by a greedy choice, and simply show that the greedy choice
combined with the solution to this subproblem yields the full solution.

81

Greedy Algorithms 7.3 The Fractional Knapsack Problem

7.3 The Fractional Knapsack Problem

You go to a candy store that is running a deal. You will purchase a bag that has a weight
capacity of , , and you are free to put any of the = items at the store as long as the bag
can contain them. The catch is, that you assign a value E8 for each item as well depending
on how much you like it. The goal is to maximize the total value that can fit inside the
bag. This problem should sound familiar, as it is a variant of the truck loading problem,
except that now we are trying to maximize over the value, not the weight. This problem
is referred to as the 0-1 Knapsack Problem, and can be solved using the same algorithm
as the truck loading problem, with a minor modification.

There is a variant to this problem called the fractional knapsack problem. This time,
instead of indivisible pieces of candy, you are allowed to take a fraction of the item instead.
For example, we might be trying to maximize the value over different flavors of icecream
that are available.

Question 112. Show that these problems exhibit optimal substructure.

82

Greedy Algorithms 7.3 The Fractional Knapsack Problem

To solve the fractional knapsack problem, we compute value per weight of each item
E8/F8 . Once this is done, we simply take the item with the maximum value per weight
until either the item runs out, or we have no more room in our bag.

Question 113. Demonstrate the greedy strategy for the fractional knapsack problem for
the following instance:

1. Icecream cup can hold , = 500 grams.

2. Three flavors, with happiness of 60, 100, 120 and total weights of 100, 200, 300 grams.

Question 114. Show that if the above instance was a 0-1 knapsack problem, the greedy
solution does not work.

83

Greedy Algorithms 7.3 The Fractional Knapsack Problem

Question 115. Show that the fractional knapsack problem has the greedy-choice property.
To find this, you need to characterize the following three points.

• A globally-optimal solution.

• Show greedy choice at first step reduces problem to the same but smaller problem.

Greedy choice must be

– Part of an optimal solution, and

– Can be made first

• Use induction to show greedy choice is best at each step (i.e., optimal substructure).

84

Greedy Algorithms 7.4 Huffman Codes

7.4 Huffman Codes

Suppose you have a file with 100,000 characters whose options and frequencies are outlined
in the table below. If we are using something like ASCII to encode the characters, we
require 8 bits to identify each one, meaning we need 800,000 bits to store the file. Since
we know which characters are in the file, it may be overkill to use something like ASCII,
and we may want to design a way to compress the file so it is not as expensive to send.

We can represent = different characters using dlog2 =e bits, giving rise to a fixed-length
code. In our instance, we can uniquely assign a bit string to each character using just
dlog2 6e = 3 bits. This reduces our storage requirement down to 300,000 bits.

We can do even better by using a variable length code. This is a coding scheme where
we represent frequent characters with less bits, and more common ones with more. The
code in the table is one such example.

a b c d e f
Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 010 011 100 101

Variable-length codeword 0 101 100 111 1101 1100

Question 116. How many bits are we using to encode our document if we use the variable
length code in the table above?

When we create a variable length code, we have to make sure that the code is prefix-
free. This means that no codeword is the prefix of any other codeword. This also makes
decoding efficient and unambiguous.

Question 117. What would the encoding for the word “face” be using the variable length
encoding in the table?

85

Greedy Algorithms 7.4 Huffman Codes

We can describe our codes using binary trees. Let each internal node store the total
number of occurrences of all its descendants. The codewords are then chosen by adding
a 0 if we go left, and a 1 if we go right.

Is there an algorithmic way we can construct a tree that looks more like the one on the
right? Turns out the answer is yes, and we can achieve this by using a greedy algorithm.

1 def huffman(C):

2 # C is a set of n characters appearing in a file that also store their frequency.

3 n = size(C)

4 # Create a min-priority queue using the elements in C, keyed by their frequency.

5 Q = priority_queue(C)

6 for i in range(1, n):

7 x = extract_min(Q)

8 y = extract_min(Q)

9 z = # new node

10 z.left = x

11 z.right = y

12 z.freq = x.freq + y.freq

13 Q.insert(z)

14 return extract_min(Q) # Return the root of the tree we created.

86

Greedy Algorithms 7.4 Huffman Codes

Question 118. Demonstrate a run of huffmanwhere the input is

a b c d e f
Frequency (in thousands) 45 13 12 16 9 5

87

Greedy Algorithms 7.4 Huffman Codes

Question 119. Show that the Huffman coding problem has the greedy-choice property.
To find this, you need to characterize the following three points.

• A globally-optimal solution.

• Show greedy choice at first step reduces problem to the same but smaller problem.

Greedy choice must be

– Part of an optimal solution, and

– Can be made first

• Use induction to show greedy choice is best at each step (i.e., optimal substructure).

88

Greedy Algorithms 7.4 Huffman Codes

Question 120. Show that the Huffman coding problem has the optimal substructure
property. That is, making a correct choice induces a subproblem whose solution builds
into the full solution.

89

	Foundations 1 – Learning the Language
	Analyzing Algorithms
	Correctness
	Efficiency

	Characterizing Running Times
	O-notation (Informal)
	-notation (Informal)
	-notation (Informal)

	Foundations 2 – Asymptotic notation and Mathematical Preliminaries
	Formal Definitions
	O-notation
	-notation
	-notation
	o-notation

	Mathematical Preliminaries
	Sums
	Logarithms
	Floors and Ceilings
	Factorials
	Combinations
	Probability

	Divide and Conquer
	Mergesort
	The Master Theorem
	Picturing the work in recursive algorithms
	The Master Theorem

	Integer multiplication
	Strassen's Algorithm
	Quicksort

	Lower bounds for sorting
	Priority Queues and Heapsort
	Recursive Heapify
	Extract Max

	Linear Time Sorting

	Dynamic Programming
	The Scheduling Problem
	Rod Cutting
	Top-down Approach
	Bottom-up Approach
	Bottom-up Approach with Solution

	Elements of Dynamic Programming
	Optimal Substructure
	Overlapping Subproblems
	Pieces to identify

	Truck Loading Problem
	Matrix Chain Multiplication
	Longest Common Subsequence

	Greedy Algorithms
	The Activity Selection Problem
	Elements of the Greedy Strategy
	Greedy-Choice Property
	Optimal Substructure

	The Fractional Knapsack Problem
	Huffman Codes

