
Foundations Foundations 1 – Learning the Language

※ Foundations 1: Learning the Language

Biologists study living organisms, psychologists study the human mind, and physicists
study the laws of the universe. What exactly is it that a computer scientist does? The name
is a bit misleading, as our study is not primarily about computers. That is something the
engineers work on. A computer scientist is interested in studying problems.

When computer scientists talk about a "problem", we are usually dealing with a gen-
eralized notion of a relation between inputs and outputs. Consider the example of the
problem of sorting a sequence of numbers in increasing order.

Problem (SORTING).

Input: A sequence of = numbers a = h01, 02, . . . , 0=i.
Output: A permutation (reordering) of the numbers h001, 002, . . . , 00=i such that 0

0
1 

0
0
2  · · ·  0

0
=
.

Given a problem, there are many ways to go from the input sequence to the output
sequence. We will call an algorithm a procedural sequence of steps that solves a problem.
When an algorithm satisfies two critical properties, we will call it a correct algorithm.
Consider the following two examples of incorrect algorithms to think about what these
properties may be.

Algorithm (HOPIUMSORT).

1. If a is sorted, return a.

2. Else: type HOPIUM in the chat, then return to step 1. (HOPIUM is an emote that
means "irrational or unwarranted optimism)

Algorithm (BOGOSORT*).

1. Write down all the numbers in a on index cards.

2. Throw all the cards in the air and pick them up.

3. Write down the numbers on the cards in the order that you picked them up in a list,
and return that list.
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Foundations 1.1 Analyzing Algorithms

Question 1. Why would we not call HOPIUMSORT a good algorithm? Why would we
not call BOGOSORT* a good algorithm? Given these problems, what properties might
we demand to say that an algorithm is correct?

1.1 Analyzing Algorithms

For any given problem, there is a wide range of correct algorithms that can solve them.
How do we choose which is better than another? An important answer to this question is
that we want a fast algorithm.

Let’s take a look at our first sorting algorithm.

1 def insertion_sort(arr):

2 for i in range(1, len(arr)):

3 current = arr[i]

4 # Insert current into the sorted subarray arr[0:i]

5 j = i - 1

6 while j > 0 and arr[j] > current:

7 arr[j + 1] = arr[j]

8 j = j - 1

9 arr[j + 1] = current

10 return max

In this class, we will use what is called the random-access machine (RAM) model as
our model of computation. In the RAM model we assume that,

• instructions execute one after another,

• each instruction (addition, subtraction, multiplication, division, remainder, floor, ceil-
ing) and data movement (load, store, copy), and control (condition/unconditional
branch) takes the same amount of time.
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Foundations 1.1 Analyzing Algorithms

In a sense, this is the simplest abstraction of a computer that is known to be a good
predictor of the performance on a real device, even if it is using an architecture that is
more sophisticated than the RAM model. Furthermore, we will see that it can be nontrivial
to analyze the running time of algorithms even in such a simplified model. After all, we
will be spending a whole quarter working on it!

Question 2. Suppose we call insertion_sort on the array

[4, 6, 1, 2, 5, 3]. (1)

Write down the state of the array at the start of each iteration of the for loop.

1 2

3 4

5 6

Question 3. At each iteration, what can we say about the subarray arr[0:i]? (Remember,
indexing in Python includes the start point, and doesn’t include the end point)

1.1.1 Correctness

One way to formally prove that an algorithm that loops like insertion_sort works
correctly is by using a loop invariant. What we answered in the above problem is the
loop invariant for this algorithm. To prove this, we will use a very similar procedure to
an inductive proof. We need to show that the following three things are true:

• Initialization: It is true prior to the first iteration of the loop.

• Maintenance: If it is true before an iteration of the loop, it remains true before the next
iteration.

• Termination: The loop terminates, and when it terminates, the invariant - usually
along with the reason that the loop terminated - gives us a useful property that helps
show that the algorithm is correct.
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Foundations 1.1 Analyzing Algorithms

Question 4. Show that the above three properties hold for insertion_sort in your own
words.

• Initialization:

• Maintenance:

• Termination:

1.1.2 Efficiency

Correctness is just the first step in finding a good algorithm. As we will see, there can
be many correct algorithms for the same problem, but many will have varying degrees of
efficiency.

One important property we will be using to measure how good an algorithm is is by
its running time. In the RAM model, we assume that each primitive instruction takes the
same amount of time. Given this fact, the component of the algorithm that affects the
running time is the size of the input. As such, we want to count the number of instructions
that will be executed given an input of "size =". We will usually denote the running time
of an algorithm on an input of size = by )(=).
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Foundations 1.1 Analyzing Algorithms

1 def insertion_sort(arr):

2 n = len(arr)

3 for i in range(1, n):

4 current = arr[i]

5 # Insert current into the sorted subarray arr[0:i]

6 j = i - 1

7 while j > 0 and arr[j] > current:

8 arr[j + 1] = arr[j]

9 j = j - 1

10 arr[j + 1] = current

11 return max

Question 5. On the right of each line of the function, write down the number of times
that lines 2-6 and 10-11 will be executed.

Question 6. If the input array is sorted, how many times will lines 7-9 be executed?

Question 7. If the input array is in reverse order, how many times will lines 6-8 be
executed?
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Foundations 1.1 Analyzing Algorithms

Question 8. Write down an expression for the worst case running time )(=) of insertion
sort given our analysis from the previous page.

Note that we performed a worst case analysis for our algorithm here. In general,
we will be interested in analyzing the worst-case running time of the algorithm over all
possible inputs of size =. For some algorithms we will instead use average case analysis

where we assume some distribution of inputs.

In summary, for any algorithm that we design to solve a particular problem, we want
to make sure that

1. it is correct, and

2. how efficient it is.
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Foundations 1.2 Characterizing Running Times

1.2 Characterizing Running Times

We ended the previous section by giving a worst case bound on the number of operations
that insertion sort must perform.

When we compare an input that has 6 elements vs. an input that has 1000 elements, we
know that the lower order terms will become irrelevant. Furthermore, the coefficient of
the =

2 terms is going to be the same for both cases, so we will discard that as well. In this
case, we are going to say that asymptotically (as = increases) insertion sort has a running
time of ⇥(=) (read big-theta of =, or just theta of =).

We will be using a tool to classify functions as a way to categorize the different running
times of our algorithms. The following language will be used to state precisely notions
like

• 5 (=) = 3
78= � 6000 grows faster than 6(=) = 30 log = + 30

• 0(=) = 7=3 + 2=2 + 10000 grows slower than 1(=) = 100 · 2= + log =

1.2.1 $-notation (Informal)

We will use $-notation to characterize an upper bound on the asymptotic behavior of a
function. In other words, we use it to say that our function grows no faster than a certain
rate, based on the highest order term.

For two function 5 and 6, we say 5 = $(6) when the growth rate of 5 is at most ()
the growth rate of 6.

Question 9. What is an asymptotic upper bound for the function 7=3 + 100=2 � 20= + 6?
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Foundations 1.2 Characterizing Running Times

1.2.2 ⌦-notation (Informal)

We will use ⌦-notation to characterize a lower bound on the asymptotic behavior of a
function. This means that the growth rate of the function is at least a certain rate, based
on the highest order term.

For two function 5 and 6, we say 5 = ⌦(6) when the growth rate of 5 is at least (�) the
growth rate of 6.

Question 10. What is an asymptotic lower bound for the function 7=3 + 100=2 � 20= + 6?

1.2.3 ⇥-notation (Informal)

Finally, we will use ⇥-notation to characterize a tight bound on the asymptotic behavior of
a function. This means that the growth rate of the function is precisely at a certain rate,
based on the highest order term. We will see what this means more formally later, but a
way to think about it is saying that the growth rate of a function can be upper bounded
and lower bounded to within a constant factor.

For two function 5 and 6, we say 5 = ⇥(6) when the growth rate of 5 is equal to the
growth rate of 6.

If a function is $( 5 (=)) and ⌦( 5 (=)) for the same function 5 , then we have shown that
the function if ⇥( 5 (=)).

Question 11. Given the previous two problems, how can we characterize the asymptotic
behavior of 7=3 + 100=2 � 20= + 6?
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Foundations 1.2 Characterizing Running Times

Question 12. Let )(=) be the number of operations required for an instance of insertion
sort with an input array of size =.

• Use asymptotic notation to characterize the upper bound on the worst case running
time.

• Use asymptotic notation to characterize the lower bound on the worst case running
time.

• Can we combine the above two to make a more precise statement about the running
time of insertion sort?
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Foundations Foundations 2 – Asymptotic notation and Mathematical Preliminaries

※ Foundations 2: Asymptotic notation and Mathematical Preliminaries

2.1 Formal Definitions

Let’s see how we might want to formalize the ideas from above. Asymptotic notation is
interested in the long term behavior of a function. In other words, we don’t really care
what happens early on in a function, as long as at some point the relation becomes clear.

Example 2.1. Let 5 (=) = =
2 and 6(=) = =

3 + 2=2 � 3.

The functions intertwine in the range from 0 to 5, but after 6 (more precisely around
5.23), we know that 5 will never be higher than 6. This is the notion we want to capture
when we say 5 = $(6) (the rate of growth of 5 is  the rate of growth of 6).
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Foundations 2.1 Formal Definitions

2.1.1 $-notation

Asymptotic notation is defined using sets.

Definition 2.2 ($-notation). Let 6 be a function. Then, we define $(6) to be the set of
functions

$(6) = { 5 (=) : there exist positive constants 2 and =0 such that
0  5 (=)  26(=) for all = � =0}.

Even though it is a set, instead of using the notation

5 (=) 2 $(6(=)), (2)

the standard literature will use
5 (=) = $(6(=)). (3)

These two mean the same thing so we will use them interchangeably.

Question 13. Show that 4=2 + 100= + 500 = $(=2). (Hint: you need to find positive
constants 2 and =0 such that the 5 (=)  26(=) for all = � =0.)

• What is 5 (=)?

• What is 6(=)?
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Foundations 2.1 Formal Definitions

2.1.2 ⌦-notation

Definition 2.3 (⌦-notation). Let 6 be a function. Then, we define ⌦(6) to be the set of
functions

$(6) = { 5 (=) : there exist positive constants 2 and =0 such that
0  26(=)  5 (=) for all = � =0}.

Question 14. Show that 17= log = = ⌦(=).

2.1.3 ⇥-notation

Remember, $ and ⌦ give upper and lower bounds on the growth rates of the functions
respectively. When we are able to have the same upper and lower bounds reach the same
family of functions, we can make a stronger statement on the behavior of the function.

Definition 2.4 (⇥-notation). Let 6 be a function. Then, we define ⇥(6) to be the set of
functions

$(6) = { 5 (=) : there exist positive constants 21, 22 and =0 such that
0  216(=)  5 (=)  226(=) for all = � =0}.

Alternatively, we can use the following definition. Given two functions 5 (=) and 6(=),
we have 5 (=) = ⇥(6(=)) if and only if 5 (=) = $(6(=)) and 5 (=) = ⌦(6(=)).
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Foundations 2.1 Formal Definitions

Question 15. Show that 3=3 + 50=2 does not belong to the set $(=2).

Question 16. Show that =2 log = does not belong to the set ⌦(=3).

2.1.4 >-notation

Both $ and ⌦ give us bounds that may or may not be asymptotically tight. For example,
The bound 3=2 = $(=2) is asymptotically tight, but 3 log = = $(log4

=) is not. We use
>-notation to denote an upper bound that is not asymptotically tight.

Definition 2.5 (>-notation). Let 5 and 6 be two functions. Then, we say that 5 (=) = >(6(=))
iff

lim
=!1

5 (=)
6(=) = 0.

Question 17. Show that 3 ln(=) = >(=).
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Foundations 2.2 Mathematical Preliminaries

2.2 Mathematical Preliminaries

2.2.1 Sums

We will often use summation notation:

1’
8=0

5 (8) = 5 (0) + 5 (0 + 1) + · · · + 5 (1). (4)

Question 18. Write down the following expression using summation notation:

32 + 42 + 52 + 62 + 72 + 82 (5)

Sometimes we want to sum over the values in a set ( = {G1, G2, . . . , G=}. In that case,
we may use the following notation’

G2(
5 (G) = 5 (G1) + 5 (G2) + · · · + 5 (G=). (6)

Question 19. Let ( = {3, 4, 7, 12, 15}. Write down the following summation explicitly:’
G2(

log(G + 1) (7)

A special case of sums that we will be very interested in is the geometric sum:
=’
8=0

2
8 = 2

0 + 2
1 + · · · + 2

= (8)

where 2 is some constant number.

In your homework, we will ask you to prove the following identity:
=’
8=0

0
8 = 1 + 0 + 0

2 + · · · + 0
= =

1 � 0
=

1 � 0

. (9)
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Foundations 2.2 Mathematical Preliminaries

2.2.2 Logarithms

In computer science, we are very interested in exponentially growing functions. In general,
when we are interested in a class of functions we are also interested in its inverse function
as well. The logarithm is the inverse function of exponential functions.

log
1
G = H iff G = 1

H
. (10)

Here are some useful properties of the logarithm that we will use throughout the
course.

1. log
1

1 = 0. 5. Glog
1
H = H

log
1
G .

2. log
1
1
0 = 0. 6. Glog

G
1 = 1

log
1
G
.

3. log
1
(GH) = log

1
(G) + log

1
(H). 7. log

0
G = log

1
0

log
1
G
.

4. log
1
G
0 = 0 log

1
G. 8. log

0
G = (log

1
G)(log

0
1).

Question 20. Prove property 2 from the above list.

2.2.3 Floors and Ceilings

Let G be some real number.

• Floor: bGc is the largest integer that is less than or equal to G.

• Ceiling: dGe is the smallest integer that is greater than or equal to G.

Question 21. What is

• b3.5c?

• b�7.5c?

• d��e?

• d7.5e?
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Foundations 2.2 Mathematical Preliminaries

2.2.4 Factorials

Question 22. How many ways can I reorder the numbers 4, 6, 8?

The expression =! (read n-factorial) is defined for any nonnegative integer:

=! = 1 · 2 · 3 · · · (= � 1) · =. (11)

We use this expression as the way to calculate the number of permutations there are for =
distinct elements.

2.2.5 Combinations

Question 23. How many ways can we choose 2 items from a bag of 5 items?

We also have some notation to represent this idea. Let
�
=

:

�
(read n choose k) be the

number of ways to choose k items from n items. We have the following closed form
expression: ✓

=

:

◆
:= =!

(= � :)!:!
. (12)
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Foundations 2.2 Mathematical Preliminaries

2.2.6 Probability

When we discuss probability, we will always be referring to probabilities with respect to
some sample space (. A subset of the sample space will be referred to as an event.

Example 2.6. Consider the game of flipping two coins. If you get two of the same face in
a row, you will win 100.

• What is the sample space for this game?

• What is the event "winning the game"?

Given our sample space, we define the probability function Pr(·) as a function that
maps an event to a real number with the following properties:

1. Pr(;) = 0

2. Pr(() = 1

3. For every event �, 0  Pr(�)  1.

4. If A and B are events such that � \ ⌫ = ;, then %(� [ ⌫) = Pr(�) + Pr(⌫).

Question 24. Suppose that the game we are playing above uses two fair coins. Then,
Pr(��) = Pr(�)) = Pr()�) = Pr())) = 1

4 . What is the probability of winning the game?

A random variable is defined as a function from a set of outcomes in a sample space
to real numbers. Let - be a random variable representing your payout from the above
game. We can express - as a function of the outcomes:

-(B) =
(

100 if B = �� or B = )) .

0 otherwise.
(13)
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Foundations 2.2 Mathematical Preliminaries

Given a random variable, we can find what the expected value E[-] of the random
variable - is. This is a generalization of the idea of the average. Suppose that - can take
the values + = {G1, . . . , G=}. Then,

E[-] :=
’
G2+

G · %(- = G). (14)

Question 25. Let’s play a similar game with a six sided dice. If you roll an 8, I will give
you 28 cookies. Assuming the dice is fair, what is the expected number of cookies we will
get from playing one round of this game?

Linearity of expectation: For any two random variables - and ., we have

E[- + .] = E[-] + E[.]. (15)
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Foundations 2.2 Mathematical Preliminaries

For any two events � and ⌫, we will say that they are independent if and only if

Pr(� \ ⌫) = Pr(�) · Pr(⌫). (16)

Question 26. Suppose we have two fair coins. Define the two events

• � = coin 1 is Heads: {�� ,�)},

• ⌫ = coin 2 is Tails: {�) ,))}.

Are these two events independent?

We will say a collection of = events ⇠ = {�1, . . . ,�=} is mutually independent (or
sometimes just independent) if for every subset {�81, . . . ,�8:} of ⇠,

Pr(�81 \ · · · \ �8:) = Pr(�81) · Pr(�82) · · ·Pr(�8:) (17)

Question 27. Suppose we flip 10 fair coins and that the outcomes are all independent.
What is the probability that we see the sequence �)��) ))�)�?
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