# **\*** Foundations 1: Learning the Language

Biologists study living organisms, psychologists study the human mind, and physicists study the laws of the universe. What exactly is it that a computer scientist does? The name is a bit misleading, as our study is not primarily about computers. That is something the engineers work on. A computer scientist is interested in studying **problems**.

When computer scientists talk about a "problem", we are usually dealing with a generalized notion of a relation between inputs and outputs. Consider the example of the problem of sorting a sequence of numbers in increasing order.

Problem (SORTING).

**Input:** A sequence of *n* numbers  $\mathbf{a} = \langle a_1, a_2, \dots, a_n \rangle$ .

**Output:** A permutation (reordering) of the numbers  $\langle a'_1, a'_2, ..., a'_n \rangle$  such that  $a'_1 \leq a'_2 \leq \cdots \leq a'_n$ .

Given a problem, there are many ways to go from the input sequence to the output sequence. We will call an algorithm a procedural sequence of steps that solves a problem. When an algorithm satisfies two critical properties, we will call it a **correct algorithm**. Consider the following two examples of incorrect algorithms to think about what these properties may be.

# Algorithm (HOPIUMSORT).

- 1. If **a** is sorted, return **a**.
- 2. Else: type HOPIUM in the chat, then return to step 1. (HOPIUM is an emote that means "irrational or unwarranted optimism)



# Algorithm (BOGOSORT\*).

- 1. Write down all the numbers in **a** on index cards.
- 2. Throw all the cards in the air and pick them up.
- 3. Write down the numbers on the cards in the order that you picked them up in a list, and return that list.

**Question 1.** Why would we not call HOPIUMSORT a good algorithm? Why would we not call BOGOSORT\* a good algorithm? Given these problems, what properties might we demand to say that an algorithm is **correct**?

```
HOPIUMSORT : Might never half!!
BOGOSORT* : Return wrong onswer w.h.p.
Correct olgor:thm:
• Halt.
• Solve the problem.
```

# 1.1 Analyzing Algorithms

For any given problem, there is a wide range of **correct algorithms** that can solve them. How do we choose which is better than another? An important answer to this question is that we want a fast algorithm.

Let's take a look at our first sorting algorithm.

```
def insertion_sort(arr):

for (i) in range(1, len(arr)):

              current = arr[i]
-> 3
              # Insert current into the sorted subarray arr[0:i]
   4
              j = i - 1
   5
              while j \ge 0 and arr[j] > current:
   6
                  arr[j + 1] = arr[j] <
   7
                  i = i - 1 \in
   8
              arr[j + 1] = current
   9
          return max
  10
```

In this class, we will use what is called the **random-access machine (RAM) model** as our model of computation. In the RAM model we assume that,

• instructions execute one after another,

each instruction (addition, subtraction, multiplication, division, remainder, floor, ceiling) and data movement (load, store, copy), and control (condition/unconditional branch) takes the same amount of time.

In a sense, this is the simplest abstraction of a computer that is known to be a good predictor of the performance on a real device, even if it is using an architecture that is more sophisticated than the RAM model. Furthermore, we will see that it can be nontrivial to analyze the running time of algorithms even in such a simplified model. After all, we will be spending a whole quarter working on it!

**Question 2.** Suppose we call insertion\_sort on the array

$$[4, 6, 1, 2, 5, 3].$$
 (1)

Write down the state of the array at the start of each iteration of the for loop.



Question 3. At each iteration, what can we say about the subarray arr[0:i]? (Remember, indexing in Python includes the start point, and doesn't include the end point)

The subarray are [0:2] is always sorted when the outer loop starts.

### 1.1.1 Correctness

One way to formally prove that an algorithm that **loops** like insertion\_sort works correctly is by using a **loop invariant**. What we answered in the above problem is the loop invariant for this algorithm. To prove this, we will use a very similar procedure to an inductive proof. We need to show that the following three things are true:

• **Initialization:** It is true prior to the first iteration of the loop.

( Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.

• **Termination:** The loop terminates, and when it terminates, the invariant - usually along with the reason that the loop terminated - gives us a useful property that helps show that the algorithm is correct.

**Question 4.** Show that the above three properties hold for insertion\_sort in your own words.

Initialization: Before the loop, i=7. arr[0:1]
 Single element 3 sorted.

• Termination:

# 1.1.2 Efficiency

Correctness is just the first step in finding a good algorithm. As we will see, there can be many correct algorithms for the same problem, but many will have varying degrees of efficiency.

One important property we will be using to measure how good an algorithm is is by its running time. In the RAM model, we assume that each primitive instruction takes the same amount of time. Given this fact, the component of the algorithm that affects the running time is the size of the input. As such, we want to count the number of instructions that will be executed given an input of "size n". We will usually denote the running time of an algorithm on an input of size n by T(n).

$$T(n) = n^3$$

def insertion\_sort(arr):  

$$n = len(arr)$$
  
for i in range(1, n):  
 $u = v$   
 $u = arr[i]$   
 $for i in range(1, n):$   
 $u = v$   
 $u = arr[i]$   
 $u = v$   
 $u = v$   

→ **Question 5.** On the right of each line of the function, write down the number of times that lines 2-6 and 10-11 will be executed.

→ **Question 6.** If the input array is sorted, how many times will lines 7-9 be executed?



Question 7. If the input array is in reverse order, how many times will lines 6-8 be  $\mu = 6$ .



**Question 8.** Write down an expression for the **worst case running time** T(n) of insertion sort given our analysis from the previous page.

 $3\left(\frac{h^2}{2}-\frac{n}{2}\right)+4(n-1)+2$ 

$$=\frac{3}{2}n^2+\frac{5}{2}n-3$$

Note that we performed a **worst case analysis** for our algorithm here. In general, we will be interested in analyzing the **worst-case running time** of the algorithm over all possible inputs of size *n*. For some algorithms we will instead use **average case analysis** where we assume some distribution of inputs.

In summary, for any algorithm that we design to solve a particular problem, we want to make sure that

- 1. it is correct, and
- 2. how efficient it is.

# 1.2 Characterizing Running Times

We ended the previous section by giving a worst case bound on the number of operations that insertion sort must perform.

$$\frac{3}{2}n^2 + \frac{5}{2}n - 3 = O(n^2)$$

When we compare an input that has 6 elements vs. an input that has 1000 elements, we know that the lower order terms will become irrelevant. Furthermore, the coefficient of the  $n^2$  terms is going to be the same for both cases, so we will discard that as well. In this case, we are going to say that asymptotically (as *n* increases) insertion sort has a running time of  $\Theta(n)$  (read big-theta of *n*, or just theta of *n*).

We will be using a tool to classify functions as a way to categorize the different running times of our algorithms. The following language will be used to state precisely notions like

• 
$$f(n) = \frac{3}{78}n - 6000$$
 grows faster than  $g(n) = 30 \log n + 30$   
•  $a(n) = 7n^3 + 2n^2 + 10000$  grows slower than  $b(n) = 100 \cdot 2^n + \log n$ 

#### 1.2.1 **O-notation (Informal)**

We will use O-notation to characterize an upper bound on the asymptotic behavior of a function. In other words, we use it to say that our function grows no faster than a certain rate, based on the highest order term.

For two function f and g, we say f = O(g) when the growth rate of f is at most  $(\leq)$ the growth rate of *g*.

**Question 9.** What is an asymptotic upper bound for the function  $7n^3 + 100n^2 - 20n + 6$ ?  $f(n) \sim n^3$ a = O(b)g=O(f) "gruth rate of g = gruth rate of f" f(u) = O(g(u))g = n4, n5, n6, hgn, 3, 7

# **1.2.2** $\Omega$ -notation (Informal)

We will use  $\Omega$ -notation to characterize a *lower bound* on the asymptotic behavior of a function. This means that the growth rate of the function is *at least* a certain rate, based on the highest order term.

For two function f and g, we say  $f = \Omega(g)$  when the growth rate of f is at least  $(\geq)$  the growth rate of g.

**Question 10.** What is an asymptotic lower bound for the function  $7n^3 + 100n^2 - 20n + 6?$ 

 $f(n) = \int Lg(n) \qquad g(n) = n^3, n, c n^2, \cdots$ 

# **1.2.3** $\Theta$ -notation (Informal)

Finally, we will use  $\Theta$ -notation to characterize a *tight bound* on the asymptotic behavior of a function. This means that the growth rate of the function is *precisely* at a certain rate, based on the highest order term. We will see what this means more formally later, but a way to think about it is saying that the growth rate of a function can be upper bounded and lower bounded to within a constant factor.

For two function  $\underline{f}$  and  $\underline{g}$ , we say  $\underline{f} = \Theta(\underline{g})$  when the growth rate of f is equal to the growth rate of g.

If a function is O(f(n)) and  $\Omega(f(n))$  for the same function f, then we have shown that the function if  $\Theta(f(n))$ .  $\begin{pmatrix} \mathcal{A} = \mathcal{O}(g) & \text{and} & \mathcal{A} = \mathcal{O}(g) \end{pmatrix} \implies \mathcal{A} = \mathcal{O}(g)$ 

**Question 11.** Given the previous two problems, how can we characterize the asymptotic behavior of  $7n^3 + 100n^2 - 20n + 6$ ?

 $f(n) = \Theta(n^3)$ 

**Question 12.** Let  $\underline{T(n)}$  be the number of operations required for an instance of insertion sort with an input array of size *n*.

• Use asymptotic notation to characterize the upper bound on the worst case running time.  $\tau(n) = \frac{3}{2}n^2 + \frac{5}{2}n - 3 = O(n^2)$ 

Even in the worst case, the algorithm requires at most ~n2 operations.

• Use asymptotic notation to characterize the lower bound on the worst case running time.

 $T(n) = \Omega(n^2)$ 

There exists a worst care imput that requires at least and operations.

• Can we combine the above two to make a more precise statement about the running time of insertion sort?

 $T(n) = \Theta(n^2)$ 

# \* Foundations 2: Asymptotic notation and Mathematical Preliminaries

# 2.1 Formal Definitions

Let's see how we might want to formalize the ideas from above. Asymptotic notation is interested in the long term behavior of a function. In other words, we don't really care what happens early on in a function, as long as at some point the relation becomes clear.



The functions intertwine in the range from 0 to 5, but after 6 (more precisely around 5.23), we know that f will never be higher than g. This is the notion we want to capture when we say f = O(g) (the rate of growth of f is  $\leq$  the rate of growth of g).

# 2.1.1 *O*-notation

Asymptotic notation is defined using sets.

**Definition 2.2** (O-notation). Let  $\underline{g}$  be a function. Then, we define  $O(\underline{g})$  to be the *set of functions* 

$$O(g) = \{f(\underline{n}) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le f(\underline{n}) \le \underline{cg(n)} \text{ for all } n \ge n_0 \}.$$

Even though it is a set, instead of using the notation

$$f(n) \in O(g(n)),$$
(2)

the standard literature will use

$$f(n) = O(g(n)).$$
(3)

These two mean the same thing so we will use them interchangeably.

→ Question 13. Show that  $4n^2 + 100n + 500 = O(n^2)$ . (Hint: you need to find positive constants *c* and  $n_0$  such that the  $f(n) \le cg(n)$  for all  $n \ge n_0$ .)

Solution What is 
$$f(n)$$
?  $4n^2 + 100n + 500$   
What is  $g(n)$ ?  $n^2$ 

$$4u^2 + 100u + 500 \leq C \cdot u^2$$
  
$$f(u) \leq C - g(u)$$

$$\frac{p^{4}}{f(n)} = \frac{4n^{2} + 100n + 500}{\Gamma} \leq \frac{4n^{2} + 100n^{2} + 500n^{2}}{\Gamma} = \frac{604n^{2} - 604n^{2}}{\ln q \ln n}$$

$$\ln q \ln n \ln n = 1$$

Choose 
$$c = 604$$
,  $v_0 = 7$ . Thus,  $f(u) \leq c - g(u)$   
for all  $u \geq u_0$ .

Ø

## Foundations

# **2.1.2** $\Omega$ -notation

**Definition 2.3** ( $\Omega$ -notation). Let *g* be a function. Then, we define  $\Omega(g)$  to be the *set of functions* 



Remember, O and  $\Omega$  give upper and lower bounds on the growth rates of the functions respectively. When we are able to have the same upper and lower bounds reach the same family of functions, we can make a stronger statement on the behavior of the function.

**Definition 2.4** ( $\Theta$ -notation). Let *g* be a function. Then, we define  $\Theta(g)$  to be the *set of functions* 

$$O(g) = \{f(n) : \text{there exist positive constants } c_1, c_2 \text{ and } n_0 \text{ such that}$$
  
 $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.$ 

Alternatively, we can use the following definition. Given two functions f(n) and g(n), we have  $f(n) = \Theta(g(n))$  if and only if f(n) = O(g(n)) and  $f(n) = \Omega(g(n))$ .

# Foundations $f = g = 2.1 \quad Formal \ Definitions$ Question 15. Show that $3n^3 + 50n^2$ does not belong to the set $O(n^2)$ . $f(n) \leq c \cdot g(n)$ $3n^3 + 50n^2 \leq c \cdot n^2$ We must chose c such that $\frac{c-50}{3} \geq n$ $3n + 50 \leq c$ for all large n. $\vdots$ $5ine \ c \ mast \ be \ constant, \ This \ n \ n+ \ possible!$ $n \leq \frac{c-60}{3}$ Question 16. Show that $n^2 \log n$ does not belong to the set $\Omega(n^3)$ . $c \cdot g(n) \leq f(n)$

 $n^{2} \log n \ge c \cdot n^{2}$   $Must choose c s.t. as n \Rightarrow \infty$   $\log n \ge c \cdot n$   $\frac{\log n}{n} \ge c$   $\int s \ge 0$ 

Both *O* and  $\Omega$  give us bounds that may or may not be asymptotically tight. For example, The bound  $3n^2 = O(n^2)$  is asymptotically tight, but  $3\log n = O(\log^4 n)$  is not. We use *o*-notation to denote an upper bound that is **not** asymptotically tight.

**Definition 2.5** (*o*-notation). Let *f* and *g* be two functions. Then, we say that f(n) = o(g(n)) iff

 $=\lim_{n\to\infty}\frac{3/n}{n}=\lim_{n\to\infty}\frac{3}{n}=0$ 

Ø/

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

**Question 17.** Show that  $3\ln(n) = o(\underline{n})$ .

$$\lim_{n \to \infty} \frac{f}{g} = \lim_{n \to \infty} \frac{3 \ln(n)}{n} \neq \frac{\infty}{\infty}$$

$$(L(Hopital's Pule): \lim_{n \to \infty} \frac{f}{g} = \lim_{n \to \infty} \frac{f'}{g'}$$

$$f(x) = l_n(x) \implies f'(x) = \frac{1}{x}$$

13

2.2 Mathematical Preliminaries

# 2.2.1 Sums

Sum = 0 for c in vauge (a, b+i): sum + = f(c)

We will often use summation notation:

$$\sum_{i \neq a}^{(b)} f(i) = f(a) + f(a+1) + \dots + f(b).$$
(4)

->> **Question 18.** Write down the following expression using summation notation:

$$\implies 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 8^2 \tag{5}$$

Sometimes we want to sum over the values in a set  $S = \{x_1, x_2, ..., x_n\}$ . In that case, we may use the following notation

$$\sum_{x \in S} f(x) = f(x_1) + f(x_2) + \dots + f(x_n).$$
(6)

**Question 19.** Let  $S = \{3, 4, 7, 12, 15\}$ . Write down the following summation explicitly:

$$\sum_{x \in S} \log(x+1) \tag{7}$$

A special case of sums that we will be very interested in is the **geometric sum**:

$$\sum_{i=0}^{n} c^{i} = c^{0} + c^{1} + \dots + c^{n}$$
(8)

where *c* is some constant number.

In your homework, we will ask you to prove the following identity:

$$\sum_{i=0}^{n} a^{i} = 1 + a + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a}.$$
(9)

2.2 Mathematical Preliminaries

# 2.2.2 Logarithms

In computer science, we are very interested in exponentially growing functions. In general, when we are interested in a class of functions we are also interested in its **inverse** function as well. The **logarithm** is the inverse function of exponential functions.

$$\log_{b} x = y \text{ iff } x = \frac{b^{y}}{2}.$$
 (10)

Here are some useful properties of the logarithm that we will use throughout the course.

1. 
$$\log_{b} 1 = 0.$$
  
2.  $\log_{b} b^{a} = a.$   
3.  $\log_{b}(xy) = \log_{b}(x) + \log_{b}(y).$   
4.  $\log_{b} x^{a} = a \log_{b} x.$   
5.  $x^{\log_{b}} y = y^{\log_{b}} x.$   
6.  $x^{\log_{x}} b = \frac{1}{\log_{b} x}.$   
7.  $\log_{a} x = \frac{\log_{b} a}{\log_{b} x}.$   
8.  $\log_{a} x = (\log_{b} x)(\log_{a} b).$   
9.  $\log_{b} b = 7.$ 

Question 20. Prove property 2 from the above list.

$$y = \log b^{\alpha}$$

$$b^{2} = b^{2} \rightarrow \log b^{3} = \log b^{\alpha}$$

$$= y = a \quad (mk 4) \quad y \log b = a \log b \quad \Longrightarrow \quad y = a$$

### 2.2.3 Floors and Ceilings

Let *x* be some real number.

- Floor: x is the largest integer that is less than or equal to x.
- Ceiling: [*x*] is the smallest integer that is greater than or equal to *x*.

## **Question 21.** What is

→ 
$$[3.5]?$$
 3  
→  $[-7.5]?$  -8  
→  $[-\pi]?$  -3  
→  $[7.5]?$  8

#### 2.2.4 Factorials

Question 22. How many ways can I reorder the numbers 4, 6, 8?

$$N(u-1) - 3 \cdot 2 - 1 = n!$$

The expression *n*! (read n-factorial) is defined for any nonnegative integer:

$$n! = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n. \tag{11}$$

We use this expression as the way to calculate the number of permutations there are for *n* distinct elements.

### 2.2.5 Combinations

Question 23. How many ways can we choose 2 items from a bag of 5 items?

$$5 \cdot 4 = 10$$

$$2 \cdot 1 = 10$$

$$4 \circ f choices for first two items$$

$$5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

$$(5)$$

$$(5)$$

$$7 \land 7$$

We also have some notation to represent this idea. Let  $\binom{n}{k}$  (read n choose k) be the number of ways to choose k items from n items. We have the following closed form expression:

$$\binom{n}{k} := \frac{n!}{(n-k)!k!}.$$
(12)
  
remove the last n-k terms
  
from the numerator.

# 2.2.6 Probability

When we discuss probability, we will always be referring to probabilities with respect to some **sample space** *S*. A subset of the sample space will be referred to as an **event**.

**Example 2.6.** Consider the game of flipping two coins. If you get two of the same face in a row, you will win 100.

- What is the sample space for this game?
- What is the event "winning the game"?

Given our sample space, we define the probability function  $Pr(\cdot)$  as a function that maps an event to a real number with the following properties:

- 1.  $Pr(\emptyset) = 0$
- 2. Pr(S) = 1
- 3. For every event  $A, 0 \leq \Pr(A) \leq 1$ .
- 4. If A and B are events such that  $A \cap B = \emptyset$ , then  $P(A \cup B) = Pr(A) + Pr(B)$ .

**Question 24.** Suppose that the game we are playing above uses two fair coins. Then,  $Pr(HH) = Pr(HT) = Pr(TH) = Pr(TT) = \frac{1}{4}$ . What is the probability of winning the game?

A **random variable** is defined as a function from a set of outcomes in a sample space to real numbers. Let *X* be a random variable representing your payout from the above game. We can express *X* as a function of the outcomes:

$$X(s) = \begin{cases} 100 \text{ if } s = HH \text{ or } s = TT. \\ 0 \text{ otherwise.} \end{cases}$$
(13)

Given a random variable, we can find what the **expected value**  $\mathbb{E}[X]$  of the random variable *X* is. This is a generalization of the idea of the **average**. Suppose that *X* can take the values  $V = \{x_1, \ldots, x_n\}$ . Then,

$$\mathbb{E}[X] := \sum_{x \in V} x \cdot P(X = x).$$
(14)

**Question 25.** Let's play a similar game with a six sided dice. If you roll an *i*, I will give you 2*i* cookies. Assuming the dice is fair, what is the expected number of cookies we will get from playing one round of this game?

**Linearity of expectation:** For any two random variables *X* and *Y*, we have

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]. \tag{15}$$

For any two events *A* and *B*, we will say that they are **independent** if and only if

$$\Pr(A \cap B) = \Pr(A) \cdot \Pr(B). \tag{16}$$

Question 26. Suppose we have two fair coins. Define the two events

- $A = \text{coin 1 is Heads: } \{HH, HT\},\$
- $B = \operatorname{coin} 2$  is Tails: {HT, TT}.

Are these two events independent?

We will say a collection of *n* events  $C = \{A_1, ..., A_n\}$  is **mutually independent** (or sometimes just independent) if for every subset  $\{A_{i1}, ..., A_{ik}\}$  of *C*,

$$\Pr(A_{i1} \cap \dots \cap A_{ik}) = \Pr(A_{i1}) \cdot \Pr(A_{i2}) \cdots \Pr(A_{ik})$$
(17)

**Question 27.** Suppose we flip 10 fair coins and that the outcomes are all independent. What is the probability that we see the sequence *HTHHT TTHTH*?

| $\frac{AL62}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . n-l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. for i in range (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sum_{i=0}^{\infty} \frac{1}{i} = 0  \text{i}  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2. for j in range (n) (n?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3. $print(i:j)$ $\binom{n^2}{n^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $1 - \sum_{i=0}^{n} 1 = 1 + 1 + 1 + \cdots + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| n-1 $n-7$ $n-7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2, 3, 2, 2, 1 = 2 n =<br>i=0, j=0<br>i=0, j=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $h + n + \dots + n = n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2n^2 + n = O(n^2) = \Theta(\alpha^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1. fir i in rauge (n):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = $ |
| 2. for j in range (i):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3. print ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $1. \sum_{z=0}^{n} 1 = n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $l = \frac{1}{2} = n$ $\frac{1}{2} = \frac{1}{2} = n$ $\frac{1}{2} = \frac{1}{2} = $ | $(u-1)$ = $\sum_{i=0}^{n-1} i = 0 + (i+2+3+\cdots+(n-1))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(+1) = \sum_{i=0}^{n-1} i = 0 + (+2+3+\dots+(n-1))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{(n-1)}{(n+1)} = \sum_{i=0}^{n-1} i = 0 + (1+2+3+\cdots+(n-1))$ Here $\sum_{i=0}^{n-1} i = 0 + (1+2+3+\cdots+(n-1))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} (n-1) \\ (n-1) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} (n-1) = \sum_{i=0}^{n-1} i = 0 + (1+2+3+\cdots+(n-1)) \\ (n-1) - n = \sum_{i=0}^{n-1} \sum_{i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \frac{n-1}{1} = \sum_{i=0}^{n-1} i = 0 + (i+2+3+\dots+(n-1)) $ $ \frac{(n-1)-n}{2} = \frac{n^2 - n}{2} = 0(n^2) = 0(n^2) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |