
Foundations Foundations 1 – Probability and Complex Numbers

※ Foundations 1: Probability and Complex Numbers

Humor is the ability to see three sides to one coin - Ned Rorem

1.1 A single coin

You may be familiar with the concept of a sample space from probability. This is simply the
collection of possible outcomes given a probabilistic procedure. In this course, we will often
discuss state spaces instead, which are the set of possible states some system can be in. The
distinction is that a state represents a dynamic system, where the state is expected to change as
time progresses due to some external force applied to it. In our case, this force will be modeled
using computational gates, but more on that later.

Suppose we have a biased coin that lands on heads with probability 𝐿.

Question 1. What are the possible states that the coin can be in?

An important thing to note is that when we say "state", this corresponds to our best representa-
tion of the object, not necessarily the true physical state of the object. Think of it as a mental model
for our prediction of the state of the coin. Critically, this means that our mental representation of
the coin can change depending on whether we are looking at the coin or not.

Question 2. Suppose we took the coin and place it in a box, close it, then give it a good shake.
How can we mathematically model and represent the action of shaking the box?

The above examples were instances of some important mathematical tools we will be using.

Definition 1.1 (Probability Vector). A probability vector is a vector containing nonnegative real
entries that sum to 1. The entries store the probability of seeing the event corresponding to the
index.

Definition 1.2 (Stochastic Matrix). A stochastic matrix is a matrix with nonnegative elements
whose columns add up to 1.
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Foundations 1.1 A single coin

Question 3. Show that multiplying a probability vector by a stochastic matrix always results in
another probability vector.

Question 4. Describe the stochastic matrix representing the action of turning the box upside down.
Think of it as flipping the coin regardless of its face.

Question 5. Consider the following coin game using a fair coin (probability of heads is 1/2), where
the action will change depending on the state. The action during a single turn is the following:

• If the current state is HEADS: Do a fair coin flip.

• If the current state is TAILS: Turn the coin over.

Describe the stochastic matrix corresponding to this game.

Challenge: If I had someone play this game for me for 100 turns, how would I represent the
state of the coin? 1000 turns? Infinite turns? Is there a state the coin will converge to?
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Foundations 1.2 Two coins

Example 1.3. In general, we can describe the entries of a stochastic matrix for a coin by the following:

[
P(𝑀after|𝑀before) P(𝑀after|𝑁before)
P(𝑁after|𝑀before) P(𝑁after|𝑁before)

]
(1)

This is consistent with our definition, as the columns correspond to conditioned probability dis-
tributions implying that the entries are nonnegative and do sum to 1.

1.2 Two coins

How can we extend this mathematical model to a system of two coins? Suppose we have two

biased coins, where the state of the first coin is represented by the vector

[
𝑂

𝑃

]
and the state of the

second coin is represented by the vector

[
𝑄

𝑅

]
. Then,



P[𝑀𝑀]
P[𝑀𝑁]
P[𝑁𝑀]
P[𝑁𝑁]


=



𝑂𝑄

𝑂𝑅

𝑃𝑄

𝑃𝑅


=

[
𝑂

𝑃

]
→
[
𝑄

𝑅

]
=



𝑂

[
𝑄

𝑅

]

𝑃

[
𝑄

𝑅

]


(2)

In the above equation, the symbol "→" is called the tensor product or Kronecker product and will
be the standard way we combine two state spaces.

Question 6. Suppose someone flipped two fair coins (probability of seeing heads is 1/2). How
would we represent the full system of the two coins?
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Foundations 1.2 Two coins

Two coins introduces some complexity to our model. It turns out that not all probability vectors
with four elements can be described by simply taking the tensor product between two probability
vectors with two elements! We will prove this is the case by taking a special example in the
following question.

Question 7. Consider the following probability vector:

𝑆 =



1/2
0
0

1/2


(3)

Prove that this vector cannot be constructed by taking the tensor product between two probability
vectors representing coins.

Question 8. Suppose both of the coins begin in the state tails. Is there a sequence of actions on
the individual coins (think stochastic matrices) such that the final state of the two coins will be 𝑆

defined in equation (3)?

We will call states that can’t be decomposed into a tensor product of smaller states a correlated
state. Why correlated? If I told you what the state of the first coin, this will tell you something
about the state of the second coin!
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Foundations 1.3 Complex Numbers and Trigonometry

1.3 Complex Numbers and Trigonometry

The shortest path between two truths in the real domain passes through the complex domain.

- Jacques Hadamard

Before diving into our exploration of quantum states, it’ll be helpful to review some important
definitions and properties about complex numbers, as well as the vectors and matrices that have
complex entries. We will also observe the versatility of linear algebra, as it gives us a handle on
describing states and complex numbers.

Definition 1.4 (Complex Number (Standard Representation)). A complex number 𝜑 is a number
that can be written as

𝜑 = 𝐿 + 𝑀𝑁 (4)

for two real numbers 𝐿 and 𝑀, and 𝑁 is defined to be the constant satisfying 𝑁
2 = →1. This is

the standard representation (or standard form) of expressing a complex number. The set of all
complex numbers will be written as C.

Every complex number has a complex conjugate. The complex conjugate of 𝜑 = 𝐿 + 𝑀𝑁 is

𝜑↑ = 𝐿 → 𝑀𝑁. (5)

A single complex number can be described as a vector in the complex plane where the x-axis
corresponds to the real component 𝐿 and the y-axis corresponds to the imaginary component 𝑀.

We could rewrite a complex number as a column vector using its "coordinates" as

[
𝐿

𝑀

]
.

Question 9. Draw the vector representing the complex number 𝑂 = 0.5 → 0.3𝑁 and 𝑂
↑ in the left

figure. In the right figure, draw 𝑃 =
√

3
4 + 𝑁

√
1
4 and 𝑃

↑.
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Foundations 1.3 Complex Numbers and Trigonometry

Definition 1.5 (Norm of Complex Number). The norm |𝜑| of a complex number 𝜑 is defined as

|𝜑| =
↓
𝐿

2 + 𝑀
2
. (6)

This is the "size" of the complex number, and we can see why this is true by looking at the complex
plane. Because of this, |𝜑| > 0 for any complex number, and the only time |𝜑| = 0 is when 𝜑 = 0.

Question 10. Find the norm of 𝑂 and 𝑃 from the previous problem.

What can we say about a right triangle with hypotenuse of 1?
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Foundations 1.3 Complex Numbers and Trigonometry

Another way to represent a complex number is by its phase representation.

Definition 1.6 (Complex Number (Phase Representation)). On the complex plane, we can also
represent the number using the counterclockwise angle 𝜒 from 1 + 0𝑁, and its norm |𝜑|. That is,

𝜑 = |𝜑|(cos𝜒 + 𝑁 sin𝜒) = |𝜑|𝑄 𝑁𝜒 (7)

where the last equality uses the identity 𝑄
𝑁𝜒 = cos𝜒 + 𝑁 sin𝜒.

Question 11. Write the complex number 𝜑 = 3↓
2
→ 3↓

2
𝑁 in its phase representation. What can you

say about its complex conjugate 𝜑↑?

Question 12. Show that |𝜑| =
↓
𝜑↑𝜑 =

↓
𝜑𝜑↑. Try computing the norm of 𝜑 from the above example

using this method.
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Foundations 1.4 Summary and future directions

1.4 Summary and future directions

We defined a probability vector to be a vector that models a distribution over states. We did this
by assigning two quite natural constraints,

1. the entries must sum to 1, and

2. the entries must be nonnegative real numbers.

As mathematicians, we like to generalize requirements on interesting objects. How would we
generalize the above definition?

The first constraint is equivalent to saying that the 𝑅1-norm of the vector must be 1 (we will
review norms, but if this doesn’t ring a bell you should do a quick google search on the definition).

Question 13. Draw the set of points in the 2D plane whose 𝑅1-norm is 1.

This, however, is not the standard norm we study in linear algebra! We are more familiar with
measuring the length of a vector by the 𝑅2-norm. Maybe we can require the vectors to be unit
vectors in the standard 𝑅2-norm.

Once we begin considering 𝑅2-norms, the entries don’t need to be nonnegative real numbers,
since we will be squaring them anyways. Maybe we can use negative numbers, or even complex
numbers!

It turns out that these two generalizations for a probability vector are exactly what physicists
use to describe quantum states, and more importantly what we will be using to represent the states
of quantum computers. We will show that this is a good generalization as many of the questions
we answered here will work for quantum states as well.
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