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※ Foundations 2a: Introduction to Qubits

3.1 A Single Qubit

We are now ready to begin our discussion of quantum states. Let’s start by defining a quantum bit
or qubit which is a quantum state that can model a binary system.

Definition 3.1. A qubit is an object which can be represented using a unit vector with complex
amplitudes 𝜑0 and 𝜑1 as

|𝜒→ =
[
𝜑0

𝜑1

]
, (8)

where we say that 𝜑𝐿 is the amplitude corresponding to the event 𝐿 for 𝐿 ↑ {0, 1}. The notation |𝜒→
is read as "ket" "psi".

A unit vector is a vector with length 1. The length of a vector can be found by calculating

|| |𝜒→ || =
√
|𝜑0|2 + |𝜑1|2 (9)

Question 14. Which of the following represents a qubit?

|𝜒1→ =


1↓
3√
2
3


|𝜒2→ =

[
1
2
1
2

]
|𝜒3→ =

[
cos𝜓
sin𝜓

]
(10)
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Foundations 3.1 A Single Qubit

Two of the most important states that we will be using throughout the course are the standard
basis states, defined as

|0→ =
[
1
0

]
, |1→ =

[
0
1

]
. (11)

These are the vectors corresponding to the two primary states that the system can be in. We can
use linearity of vectors to write equation (8) as a linear combination of the standard basis states:

When both coe!cients are nonzero, we say that the state |𝜒→ is in superposition.

We are now equipped with the language to represent the state of a qubit. How do we interpret
this state? A crucial operation in quantum computing is measurement, which, for our purposes is
the way we read out the result of a quantum algorithm. If we measure |𝜒→ in the standard basis,

• with probability |𝜑0|2: we observe the outcome |0→, and the qubit collapses to |0→.

• with probability |𝜑1|2: we observe the outcome |1→, and the qubit collapses to |1→.

Similar to the case of the probability vector, observation collapses the state to the one that we observe.
The key di"erence that makes quantum states special is the fact that there are physical particles
which can truly represent superposition, whereas our discussion around probability vectors was
slightly superficial.

Question 15. Suppose we have the state

|𝜔→ =
(

1↓
6
↔ 𝐿

1↓
6

)
|0→ +

(
1↓
3
+ 𝐿

1↓
3

)
|1→ . (12)

What is the probability of measuring |0→, and what is the state after the measurement?
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Foundations 3.2 Multiple Qubits Sneak Peek

3.2 Multiple Qubits Sneak Peek

To represent a probability distribution over more than two states, we simply use a probability
vector with the number of states we need.

Question 16. Suppose we had 𝑀 bits available. How many states can we represent?

We can extend our system to multiple qubits the same way we did for probability vectors.
Instead of probabilities for events occurring, each event 𝑁 has an associated complex number 𝜑𝑁

called its amplitude. As a vector, this would look like

|𝜒→ =



𝜑0

𝜑1
.
.
.

𝜑2𝑀↔1


. (13)

We use the tensor product notation again to combine systems of states. For example, a system
of two qubits in the |0→ would be written as

|0→ ↗ |0→ =



1
0
0
0


. (14)

Again, we require that the vector is a unit vector:
∑2𝑀↔1

𝐿=0 |𝜑𝐿 |2 = 1. This ensures that the squared
norm of the amplitudes form a probability distribution.

Question 17. Write down a 2-qubit state where the probability of measuring each qubit is equal.
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Foundations 3.3 Transformations

3.3 Transformations

Quantum algorithms have three main components:

1. Store quantum information (statevector)

2. Manipulate quantum information (unitary transformations)

3. Extract some output (quantum measurement)

We’ve seen examples of what 1 and 3 look like, so here we will briefly discuss 2. The manipu-
lation of quantum information can be thought of as a transformation from one quantum state to a
new quantum state, which can be expressed in vector form as



𝜑0

𝜑1
.
.
.

𝜑𝑂↔1


↘



𝜕0

𝜕1
.
.
.

𝜕𝑂↔1


. (15)

One requirement we have for these transformations is that they be linear. This means that if
we know what a transformation does for all basis vectors, we will know how any vector will be
transformed. We will review this more carefully in the next section, so here we explore an example
for single qubit states.

Question 18. Suppose we have a linear transformation 𝑃 that acts as follows on the standard basis
states:

𝑃 |0→ = 𝑃

[
1
0

]
=

[
𝑄0

𝑅0

]
𝑃 |1→ = 𝑃

[
0
1

]
=

[
𝑄1

𝑅1

]
(16)

What is the action of 𝑃 on the state |𝜒→ := 𝜖0 |0→ + 𝜖1 |1→?
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Foundations Foundations 3a – Linear Algebra

※ Foundations 3a: Linear Algebra

Hilbert space is a big place.

- Carlton Caves

4.1 Vector Spaces

In linear algebra, we are interested in studying vector spaces.

Definition 4.1 (Vector Space). A vector space is a set of elements that is closed under linear
combinations. A linear combination is a combination of vectors via vector addition and scalar
multiplication.

The primary focus of this course will be the complex vector space of 𝑂 dimensions, which will
be referred to via the short hand C𝑂 . You may also see me (and others) refer to the "Hilbert space"
of quantum states. These are the same thing, as a Hilbert space can be thought of as a vector space
where you can take inner products. Elements of C𝑂 are vectors of the form

|𝑆→ =



𝜑0

𝜑1
.
.
.

𝜑𝑂


. (17)

You may be familiar with using ≃𝑆 to represent vectors, but here we will use |𝑆→ to represent column
vectors.

Question 19. Verify that C𝑂 is indeed a vector space. I.e., are the elements closed under linear
combinations.
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Foundations 4.2 Span and Linear Independence

4.2 Span and Linear Independence

Definition 4.2 (Span). The span of a set of 𝑂 vectors {|𝜒1→ , . . . , |𝜒𝑂→} is the set of all linear
combinations of |𝜒1→ , . . . , |𝜒𝑂→, i.e. the set of all states that can be written as

𝑇1 |𝜒1→ + · · · + 𝑇𝑂 |𝜒𝑂→ (18)

for all complex scalars 𝑇1 , . . . , 𝑇𝑂 ↑ C.

Question 20. If the following statement is true, prove it. If not, provide a counterexample:

For any pair of length two vectors with real entries |𝑆→ , |𝑈→, the span of |𝑆→ and |𝑈→ is all of R2.
In other words, any two pair of vectors spans the entire space.

Definition 4.3 (Linearly Independent Set of Vectors). Let 𝑉 = {|𝜒1→ , . . . , |𝜒𝑂→} be a set of vectors
in C𝑂 . We say that this set of vectors is linearly independent if

𝑇1 |𝜒1→ + · · · + 𝑇𝑂 |𝜒𝑂→ = 0 (19)

if and only if 𝑇𝐿 = 0 for all 𝐿.

The above definition is equivalent to saying that no basis vector can be written as a linear
combination of the other basis vectors. Equivalently, we say that a set of vectors is independent if
for any |𝜔→ ↑ C𝑂 , there is a unique set of scalars 𝑇1 , . . . , 𝑇𝑂 ↑ C𝑂 such that

𝑇1 |𝜒1→ + · · · + 𝑇𝑂 |𝜒𝑂→ = |𝜔→ . (20)
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Foundations 4.3 Inner Products and Bases

4.3 Inner Products and Bases

We can equip a vector space with an inner product, which is an operation that maps two vectors
to a scalar value. We will refer to a vector space with an inner product a Hilbert space.

Definition 4.4 (Inner Product (C𝑂 )). Let |𝜒→ =


𝜑1
.
.
.

𝜑𝑂


and |𝜔→ =



𝜕1
.
.
.

𝜕𝑂


be elements of C𝑂 . Then the

inner product between |𝜒→ and |𝜔→ is
∑

𝐿
𝜑⇐
𝐿
𝜕𝐿 . In matrix product form, an equivalent way to write

this is
[
𝜑⇐

1 · · · 𝜑⇐
𝑂

] 

𝜕1
.
.
.

𝜕𝑂


=

𝐿

𝜑⇐
𝐿
𝜕𝐿 . (21)

In ket notation, we write the dual of a complex vector |𝜒→ as ⇒𝜒| :=
[
𝜑⇐

1 · · · 𝜑⇐
𝑂

]
, read as bra psi.

Using this notation, the inner product is often written as ⇒𝜒|𝜔→. We refer to the notation of writing
vectors with these angle brackets as bra-ket notation.

Question 21. Let |𝜔→ =
[
𝐿/
↓

3√
2
3

]
and |𝜒→ =

[ 1↓
2

↔ 𝐿↓
2

]
. Calculate ⇒𝜒|𝜔→ and ⇒𝜔|𝜒→.

Question 22. What happens when we take the inner product of a vector with itself? Does it relate
to a quantity about vectors you’ve seen before?

Definition 4.5 (L2-norm). For a vector |𝜒→ ↑ C𝑂 , the L2-norm of |𝜒→ denoted is

|| |𝜒→ || :=
√
⇒𝜒|𝜒→. (22)
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Foundations 4.3 Inner Products and Bases

In this course, when we say norm, we will be referring to the L2-norm of the vector unless otherwise
stated. If the norm of a vector is 1, we say that vector is a unit vector.

Question 23. What is the norm of |𝜒→ = (2 + 𝐿) |0→ + (3 ↔ 2𝐿) |1→?

Definition 4.6 (Orthogonality). Given two vectors |𝜒→ and |𝜔→ in C𝑂 , we say that they are orthog-
onal if ⇒𝜒|𝜔→ = 0.

The inner product is a useful metric in defining a notion of similarity between two vectors. We
roughly say a high inner product between two vectors means they have high overlap, and they
point in similar directions.

Definition 4.7 (Orthogonal Basis). If a set of 𝑂 vectors 𝑉 = |𝜒1→ , . . . , |𝜒𝑂→ in C𝑂 is mutually
orthogonal (i.e., if 𝐿 ω 𝑊 then ⇒𝜒𝐿 |𝜒 𝑊→ = 0), we say that 𝑉 forms an orthogonal basis for C𝑂 .

Furthermore, if every vector |𝜒𝐿→ is also a unit vector, we call it an orthonormal basis.
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Foundations 4.4 Summary

Question 24. Write a set of orthonormal basis vectors for R2 besides the standard basis and draw
it on the plane. Find an orthonormal basis for C4 where one of the vectors is 1↓

2
(|00→ + |11→)

4.4 Summary

We have now covered the main foundational mathematical concepts we will be using to build our
understanding of quantum computing. One thing I have really enjoyed about quantum computing
is that it gave me a new way to visualize and understand the above tools, which you may have
felt were quite abstract in your preliminary courses. I hope this new angle will give you a new
appreciation and understanding of these tools. Next week we will start looking at small quantum
systems and get familiar with the circuits we will use to prove ideas about the limits of information
and construct algorithms.
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