
Quantum Computation Computation 2: Quantum Fourier Transform and Shor’s Algorithm

※ Computation 2: Quantum Fourier Transform and Shor’s Algorithm

"How dare we dream

Of solving problems that else would take more time

Than has passed since the cosmos’s Big Bang!"

- Peter Shor

2.1 Quantum Fourier Transform

Learning Outcomes

Upon following these notes and the corresponding lecture, students will be able to

• describe and analyze the effect of the quantum Fourier transform on a given input
state.

We begin by reviewing how to transition between the bit string and integer represen-
tation. To compute the value of the bit string 11001, we multiply it as follows:

1 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20 = 16 + 8 + 1 = 25. (15)

More generally, if we have a string G = G1 · · · G= where G8 is the 8-th bit of G, we can write
this as an integer using the sum

G1 · 2=�1 + G2 · 2=�2 + · · · + G= · 20 =
=’

:=1
G: · 2=�: . (16)

Throughout this section, we will frequently take complex numbers to the power of
integers, and it will be useful to have a way to toggle between the integer representation
of the power and the bit string representation.

$G = $G1·2=�1+G2·2=�2+···+G=20 (17)

= $G1·2=�1 · $G2·2=�2 · · · · · $G= ·20 (18)

=
=÷

:=1
$G: ·2=�: (19)

For the rest of the course, we will use the shorthand # = 2= . One important reason
we will be interested in complex numbers is because they are a great tool for analyzing
periodic functions. In particular, the #-th roots of unity give us a way to keep track of the
"period" in the way a clock would.
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Quantum Computation 2.1 Quantum Fourier Transform

Figure 1: Taken from Python Numerical Methods

You may have learned about the Discrete Fourier Transform (DFT). The DFT is often
used for signal processing, where a signal could be a sound wave, radio signal, or daily
temperature readings. Usually we describe these signals in the time domain. Instead of
doing this, we can take a slice of time to describe a signal in the frequency domain. By
doing this, we have a discrete set of items to build our wave out of, and we can safely
discard frequencies that are too high or low for the human ear.
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Quantum Computation 2.1 Quantum Fourier Transform

Early in the investigation of quantum algorithms, researchers figured out that a quan-
tum circuit can compute the Fourier transform very efficiently when the input vector is
encoded in the amplitudes of a quantum state. Note that this is not necessarily a faster
way to compute the classical Fourier transform, since the output is only accessible via
quantum measurement.

Definition 2.1 (Quantum Fourier Transform). Let # = 2= . For G 2 {0, 1, . . . ,# � 1}:

• Standard basis state: A length # column vector with a 1 in the :-th location

|:i =

26666666666666664

0
.
.
.

0
1
0
.
.
.

0

37777777777777775

. (20)

• Fourier basis state ($ = 4
2�8/# is the first #-th root of unity):

| :̃i = 1p
#

266666666664

$0

$:

$2:

.

.

.

$(#�1):

377777777775

. (21)

The =-qubit Quantum Fourier Transform or &�)# is the transformation that performs

&�)# |Gi = |G̃i = 1p
#

#�1’
H=0

$G·H |Hi (22)

We can model the action of &�)# by the matrix

&�)# := 1p
#

266666666664

1 1 1 · · · 1
1 $ $2 · · · $#�1

1 $2 $4 · · · $2(#�1)
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

1 $#�1 $2(#�1) · · · $(#�1)(#�1)

377777777775

. (23)
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Quantum Computation 2.1 Quantum Fourier Transform

Let’s get familiar with the Fourier basis by working through an explicit example.

Question 30. Write down the 1-qubit QFT matrix. Use the matrix to find all of the Fourier
basis states.

Question 31. Write down the 2-qubit QFT matrix. Use the matrix to find the first Fourier
basis state, |1̃i.

Let’s see if we can describe Fourier basis states for the general case. To do this, we will
use the integer to bit string mapping we discussed earlier. Recall that the mapping we are
interested in is

|Gi $ 1p
#

#�1’
H=0

$G·H |Hi . (24)

Let H = H1 · · · H= be the bitstring representation of H.

Question 32. Write down the value of H using the bits H1, . . . , H= .

Let’s use this to rewrite the power of the #-th root of unity.

$GH = $G[H1·2=�1+H2·2=�2+···+H= ·20] (25)

=
#÷
9=1

$G·H9 ·2=�9
. (26)
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Quantum Computation 2.1 Quantum Fourier Transform

We can then rewrite the Fourier basis state as

|G̃i = 1p
#

#�1’
H=0

$G·H |Hi (27)

=
1p
#

#�1’
H=0

#÷
9=1

$G·H9 ·2=�9 |Hi (28)

=
1p
#

⇣
|0i + $G·2=�1 |1i

⌘
⌦
⇣
|0i + $G·2=�2 |1i

⌘
⌦ · · · ⌦

⇣
|0i + $G·20 |1i

⌘
(29)

Question 33. Consider a 3-qubit Fourier transform. What is |7̃i? What is |7̃i written in
the form of equation (29)?

Question 34. What is the amplitude of |101i in |7̃i?

Equation (29) gives us a way to view the mapping as a tensor product of = qubits:

|Gi = |G1i ⌦ · · · ⌦ |G=i (30)

$ 1p
#

⇣
|0i + $G·2=�1 |1i

⌘
⌦
⇣
|0i + $G·2=�2 |1i

⌘
⌦ · · · ⌦

⇣
|0i + $G·20 |1i

⌘
. (31)

To summarize the algorithm, we will perform the following mapping between qubits and
then reverse the order of the qubits using swap gates at the end:

|G:i !
1p
2

⇣
|0i + $G·2:�1 |1i

⌘
. (32)

Note that the state is like a |+i state with an extra relative phase. Let’s try to determine
what this relative phase is.
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Quantum Computation 2.1 Quantum Fourier Transform

Before stating it generally, let’s take a closer look at this for a particular example. Let’s
look at |7̃i from the 3 qubit Fourier transform we were studying earlier.

Question 35. The input to the QFT circuit will be |7i = |1i ⌦ |1i ⌦ |1i. Write down the rel-
ative phase of each qubit after the QFT circuit is applied using the bitstring representation
of G.
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Quantum Computation 2.1 Quantum Fourier Transform

We can analyze the amplitudes more generally for an =-qubit QFT circuit as follows.

$G·2:�1
= 4

2�8·2:�1
2= ·G (33)

= 4

2�8
h

2:�1
2=

i
[G1·2=�1+G2·2=�2+···+G= ·2=�=] (34)

=
=÷
9=1

4

2�8
h

2:�1
2=

i
·G9 ·2=�9 (35)

=
=÷
9=:

4

2�8
29�:+1 ·G9

. (36)

Note the index change in the last line. In the case where (= � 9) + (: � 1) � =, then the
exponent is an integer multiple of 2�8, which makes the term in the product always equal
1. The condition can be simplified to : � 1 � 9, meaning we can discard the terms in the
product less than :.

The final line gives insight into what the circuit may need to look like. Since G9 is the
9-th bit of G, we see that when G9 = 0, it will kill off that entire term (set it to 1). In other
words, we only want to apply the phase when G9 = 1. This sounds a lot like a controlled
gate!

Question 36. What is the relative phase of the second qubit after applying a QFT circuit
to the three qubit input state |101i?

The controlled gate we want to apply has to apply a relative phase conditioned on the
G9-th qubit being 1. To do this, let’s define a new gate:

%0 =

"
1 0
0 4

2�8/20

#
. (37)
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Quantum Computation 2.1 Quantum Fourier Transform

We have all the pieces now to construct the algorithm.

Algorithm 1 Quantum Fourier Transform

1: for : = 1 to = do 3 Apply |G:i ! |0i + 4
2�8·G·2:�1 |1i

2: Apply � to |G:i
3: for 9 = : + 1 to = do

4: if G9 = 1, apply '9�:+1

5: end for

6: end for

7: Reorder the qubits using swap gates

Question 37. Draw the Quantum Fourier Transform circuit for 4 qubits.
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