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※ Computation 3: Quantum Search - Grover’s Algorithm

Learning Outcomes

Upon following these notes and the corresponding lecture, students will be able to

• model NP complete problems as search problems.

• describe how to translate this search problem into the query model.

• describe geometrically how a quantum algorithm can accomplish search in
$(2=/2) queries.

• construct circuits to implement Grover’s algorithm.

• describe the implications of generalizing the search problem for Grover’s algo-
rithm.

3.1 The Search Problem

Once Shor’s algorithm was discovered, many researchers became very interested in the
potential of quantum computers to solve problems that are believed to be hard for classical
computers to solved. Formally, the question being asked was the following: “Can quantum
computers solve NP-complete problems?”

Example 3.1. 3-SAT

• Input: A Boolean formula) in 3-CNF form consisting of =-Boolean variables: )(G1, G2, . . . , G=).

3-CNF: (G2 _ G7 _ G3) ^ (G5 _ G7 _ G9) ^ · · · (91)

• Output: Does ) have a satisfying assignment? That is, is there a way of setting each G8

such that ) evaluates to TRUE?

I can "prove" to you that there is a satisfying assignment by giving you an assignment
of the variables G1, . . . , G= , which you just need to plug into the function and check for
yourself.

The above example is important because not only is it in NP, it is actually a problem in
a subset of NP problems called NP-complete. NP-complete problems are often referred to
as "the hardest problems in NP", and is a significantly important set of problems because
we know that an efficient solution to any NP-complete problem would mean there is an
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Quantum Computation 3.1 The Search Problem

efficient solution to every problem in NP! It is generally believed that it is impossible to
solve NP-complete problems in polynomial time using a classical computer.

The final algorithm we study this class is again a query based algorithm. Per usual,
we will have black-box access to the function 5 : {0, 1}= ! {0, 1} we are interested in in
the form of a unitary *5 :

*5 |Gi |Hi = |Gi |H � 5 (G)i . (92)

We are interested in deciding some property of the function. For this last setting, we are
interested in the search problem:

Definition 3.2 (Search Problem). Let 5 : {0, 1}= ! {0, 1}. Is there an = bit string G such
that 5 (G) = 1?

This problem is interesting because any decision problem (including NP-complete
ones) can be formulated in this way. For example, if we have a 3-SAT instance we can set
5 (G1 · · · G=) = )(G1, · · · , G=). To simplify the analysis, we will first assume that 5 either
has a unique solution or no solution at all. In other words,

|{G | 5 (G) = 1}| = 0 or 1. (93)

In the case that a solution does exist, we will denote it by the variable 0.

Question 51. What is the classical query complexity for the above problem?

You may be wondering if this is too general for analyzing NP-complete problems, but
there is a widely believed hypothesis that a brute force search is the best we can do for
3SAT. In other words, we believe that the lower bound shown above for general 5 holds
for functions that are NP-complete too. We now want to ask what kind of speed-up is
possible if we use a quantum computer in this setting.
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Quantum Computation 3.2 Grover’s Algorithm

3.2 Grover’s Algorithm

Let |0i be the standard basis state representing the value such that 5 (0) = 1. We will also
use the notation

|#i := 1p
#

’
G2{0,1}=

|Gi (94)

to represent the uniform superposition state.

One key fact about this algorithm is that the state of our system will always stay in the
space spanned by |0i and |#i.

Question 52. Letting |Ei be the state of our system at any given time step, how can we
express the above fact mathematically?

Note that |0i and |#i are not orthogonal.

Question 53. What is the overlap between |0i and |#i? Express this using trigonometric
functions. Draw the two vectors, with |0i as a vector pointing upward, and |#i in the
right direction. What does this say about the probability of measuring |0i?

We can create an orthonormal basis that represents the same subspace by subtracting
the |0i component from |#i.

Question 54. Create a new state |4i that is orthonormal to |0i by subtracting the |0i
component from |#i.
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Quantum Computation 3.2 Grover’s Algorithm

The last preparation step we need is to express the angle between |4i and |#i. For very
small values of , it is known that

sin ⇡ . (95)

From this, we can conclude that the angle formed between |#i and |4i is approximately .

The main steps of the algorithm can be described purely geometrically. We will discuss
how to implement these steps later, but for now let’s build the intuition behind what the
algorithm is doing. I will use |Ei to represent the current state of the system. Here are the
steps that we repeat:

1. Reflect |Ei over the |4i axis.

2. Reflect |Ei over |#i.

Question 55. Let  be the angle between |Ei and |4i before applying the two steps above.
What is the angle between the two after we apply the two steps?

Question 56. What angle between |Ei and |4i would give us the highest probability to
measure |0i?
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Quantum Computation 3.2 Grover’s Algorithm

3.2.1 Implementing Reflections

How can we implement the reflections? Before discussing that, let’s think about how to
express the action of these reflections mathematically. Suppose we have a state |Ei that
we want to reflect over some other state |)i.

Question 57. Write down |Ei as a superposition of |)i and |)?i. Write down the state
|E0i after the reflection is completed.

3.2.2 Reflection over |4i

The first reflection we need to do is over the |4i axis. That is, we want

|Ei = � |4i + � |0i (96)
|E0i = � |4i � � |0i (97)

(98)

In words, we want to multiply the |0i state by -1, and the rest of the states by +1. Remember
that 0 is the unique bitstring satisfying 5 (0) = 1. We can summarize this action by

|Ei =
’
G

�G |Gi �! |E0i =
’
G

�G(�1) 5 (G) |Gi . (99)

Question 58. We know we can perform the above operation with access to *5 . *5 acts on
= + 1 qubits. What state does this qubit need to be in for us to apply the phase of (�1) 5 (G)?
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Quantum Computation 3.2 Grover’s Algorithm

3.2.3 Reflection over |#i

The mapping we want to perform here is

|Ei = � |#i + � |#?i (100)
|E0i = � |#i � � |#?i (101)

(102)

where |#i = 1p
#

Õ
G
|Gi.

Since |#i is generated by applying = Hadamard gates, the following is true:

�
⌦= |0 · · · 0i = |#i () |0 · · · 0i = �

⌦= |#i . (103)

If we apply = Hadamard gates to |#?i, we get a state |)i which is a uniform superpo-
sition over all states perpendicular to |0 · · · 0i. The goal is to now apply a phase of -1 to
every standard basis state which is not equal to |0 · · · 0i. I claim that the following 3 qubit
circuit accomplishes this:

|G1i

|G2i

|G3i

|�i

- -

- -

- -

1 2 3

If input state is |000i:

If input state is not |000i:
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Quantum Computation 3.3 Generalized Search

3.3 Generalized Search

What about the (more likely) case where there are multiple solutions? That is,

|{G | 5 (G) = 1}| = " > 1. (104)

Assume (for now) that the number of solutions " is known. We would like to find any
one of these solutions. We again define two orthogonal states, the uniform superpositions
of the solution states and non-solution states respectively:

|)1i =
1p
"

’
G: 5 (G)=1

|Gi |)0i =
1p

# � "

’
G: 5 (G)=0

|Gi . (105)

Then our starting uniform superposition state can be expressed as a weighted sum of the
above two states as

|#i =
r

# � "

#

|)0i +
r

"

#

|)1i . (106)

Since we know ", we can select the number of iterations 2 such that

(22 + 1) ⇡ �
2 (107)

in the same way we did in the previous section. In the case where " << # ,  ⇡
q

"

#
, so

the total number of iterations required is $
✓q

"

#

◆
.

Note: Since each iteration of Grover’s algorithm advances the current state by 2, we
can only guarantee that the final state is within  of |)1i.

In the next section, we will look at an algorithm which will let us handle the case where
" is unknown.

Before that though, we must resolve the question we started the section with. From
the results in this section, Grover’s algorithm does not provide us with an exponential
speed-up over classical algorithms for search problems in the query model. Is there a
quantum algorithm which can outperform Grover? It turns out this is not possible, and
Grover’s algorithm is "the best you can do" in this query model. There is a lower bound
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Quantum Computation 3.4 Amplitude Estimation

(which we will not prove here) that states that even if you are guaranteed that the |B 5 | (the
number of satisfying solutions) is 0 or 1, there is not much we can do to improve.

More formally, the lower bound states that any quantum circuit that can determine
between |B 5 | = 0 and |B 5 | = 1 with high probability will require ⌦

⇣p
#

⌘
queries to *5 .

3.4 Amplitude Estimation

In the previous section, we mentioned that if we want to find an G such that 5 (G) = 1,
we need to have an approximate idea of what " is. There is a standard method for
accomplish this that uses the QFT, but instead of discussing that I will outline a result
that was published by myself and Sandy, along with two (then) undergrads who took this
class two years ago.

Our algorithm is iterative, meaning that it jumps between a parameterized quantum
portion and a classical postprocessing portion. Let 0 be the solutions, and 0 be the angle
formed between the starting state |#i and the superposition |)0i over states that evaluate
to 0. The two are related by the expression

0 = sin0 . (108)

If we know 0, we know how many queries to make in the generalized search algorithm.
The algorithm will output an estimate for 0 . We do this by maintaining lower and
upperbounds for what 0 is.

Picture of how the algorithm works:
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