
Module 3: Quantum Computation

Contents

Computation 1: Query-based algorithms 2
1.1 Query Complexity . 2

1.2 Deutsch’s Algorithm . 4

1.3 Deutsch-Josza Algorithm . 6

1.4 Bernstein-Vazirani . 9

1.5 Simon’s Algorithm . 11

1.6 Query Based Algorithm Wrap Up . 16

Computation 2: Quantum Fourier Transform and Shor’s Algorithm 17
2.1 Quantum Fourier Transform . 17

2.2 Properties of the Fourier Transform . 25

2.2.1 The Fourier transform converts between translation and phase 26

2.2.2 Fourier Transform of Factors . 28

2.2.3 Periodic Superpositions with a Shift 29

2.3 Period Finding . 31

2.4 RSA and Number Theory . 35

2.5 Shor’s Algorithm . 40

Computation 3: Quantum Search - Grover’s Algorithm 41
3.1 The Search Problem . 41

3.2 Grover’s Algorithm . 43

3.2.1 Implementing Reflections . 45

3.2.2 Reflection over |𝑒⟩ . 45

3.2.3 Reflection over |𝜓⟩ . 46

3.3 Generalized Search . 47

3.4 Amplitude Estimation . 48

1

Quantum Computation Computation 1: Query-based algorithms

※ Computation 1: Query-based algorithms

1.1 Query Complexity

Learning Outcomes
Upon following these notes and the corresponding lecture, students will be able to

• define what query complexity is and how we calculate it in the classical and

quantum setting.

• describe the two ways to reversibly access a black box function.

To mathematically prove the advantage that quantum computers have over classical

computers, we would love to be able to answer a question like the following:

"Does there exist a problem that can be efficiently solved with a quantum computer that

cannot be solved efficiently with a classical computer?" In complexity theoretic language,

it is asking if there is a problem that is in BQP, but not in P.

We don’t really know how to prove this, because we don’t know how to show that

some problems cannot be solved efficiently. To work around this issue, we study a more

limited model, and analyze what is called query complexity.

In query complexity, we assume that we have black box access to a Boolean function

𝑓 : {0, 1}𝑛 → {0, 1}, and we want to know how many times we have to call this function to

determine some property of the function. As you will see, some of these settings are quite

artificial, but they provide good insight into the techniques that we know about quantum

algorithm design, and are a proof of concept that there are settings where quantum

computers perform better than classical. They are also often used to prove lower bounds

on algorithms.

Question 1. What is the query complexity of a classical algorithm to call a function to

determine the following properties?

• Is there any input 𝑥 such that 𝑓 (𝑥) = 1?

• Does 𝑓 (𝑥) = 1 for most of the inputs?

• Is 𝑓 periodic?

2

Quantum Computation 1.1 Query Complexity

To analyze the query complexity in a quantum setting, we need to embed this black

box access to 𝑓 into a quantum circuit. At the end of the previous module, we showed

that if 𝑓 can be computed by a classical circuit, then there exists a reversible circuit that

computes 𝑓 . Mathematically, we will express the general action of the reversible circuit as

(𝑥, 𝑦, 0𝑘) → (𝑥, 𝑦 ⊕ 𝑓 (𝑥), 0𝑘). (1)

Since the last register starts and ends with 0s for all inputs, we can just ignore it. Now we

can embed our query to 𝑓 as the reversible circuit with the following action:

|𝑥1⟩ |𝑥1⟩

...
...

|𝑥𝑛⟩ |𝑥𝑛⟩

|𝑦⟩ |𝑦 ⊕ 𝑓 (𝑥)⟩

𝑈 𝑓

Often when implementing quantum algorithms, we want the output to be stored in

the phase instead of in an extra qubit:

|𝑥⟩ → (−1) 𝑓 (𝑥) |𝑥⟩ (2)

This can be very useful for orchestrating interference patterns as we will see.

Question 2. Show that for a particular value of |𝑦⟩, we can use the above circuit to

implement equation (2).

3

Quantum Computation 1.2 Deutsch’s Algorithm

1.2 Deutsch’s Algorithm

Learning Outcomes
Upon following these notes and the corresponding lecture, students will be able to

• describe the property of the function Deutsch’s Algorithm is trying to determine.

• analyze the circuit of Deutsch’s Algorithm.

Deutsch’s algorithm was the first quantum algorithm proposed that demonstrated

a speed up in query complexity over classical, though the speed up isn’t too exciting.

Nevertheless, the ideas used will give us the groundwork for thinking about more complex

quantum algorithms.

Consider a single bit Boolean function 𝑓 : {0, 1} → {0, 1}. We will denote its output

bit for each input as

• 𝑓 (0) = 𝑏0

• 𝑓 (1) = 𝑏1

Given this function, we would like to determine the parity of 𝑏0 + 𝑏1, or more succinctly,

we want to compute 𝑏0 ⊕ 𝑏1.

Question 3. How many queries to 𝑓 do we need classically to determine the parity of 𝑓 ?

I now claim that using a quantum computer, we can determine the parity using just

one call to 𝑓 . Here is the circuit for Deutsch’s algorithm.

|0⟩

|−⟩ |−⟩

𝐻

𝑈 𝑓

𝐻

1 2 3

4

Quantum Computation 1.2 Deutsch’s Algorithm

Question 4. What is the state of the system at 1?

Question 5. What is the state of the system at 2?

Question 6. What is the state of the system at 2 if 𝑓 (0) = 𝑓 (1)? What are the possible

measurement outcomes for Deutsch’s algorithm in this case?

Question 7. What is the state of the system at 3 if 𝑓 (0) ≠ 𝑓 (1)? What are the possible

measurement outcomes for Deutsch’s algorithm in this case?

5

Quantum Computation 1.3 Deutsch-Josza Algorithm

1.3 Deutsch-Josza Algorithm

Learning Outcomes
Upon following these notes and the corresponding lecture, students will be able to

• describe the property of the function the Deutsch-Josza Algorithm is trying to

determine.

• apply the 𝑛-qubit Hadamard identity.

• analyze the circuit of Deutsch’s Algorithm.

The Deutsch-Josza algorithm is a generalization of what we saw in the previous section.

This time, we have access to a Boolean function with 𝑛-bit inputs:

𝑓 : {0, 1}𝑛 → {0, 1} (3)

and are promised that 𝑓 satisfies one of the two following properties:

• 𝑓 is a constant function, meaning that 𝑓 (𝑥) = 𝑐 for all inputs 𝑥

• 𝑓 is a balanced function, meaning that 𝑓 (𝑥) = 0 for half of the inputs, and 𝑓 (𝑥) = 1 for

the remaining half.

Question 8. How many queries do we need to make to this function to decide with 100%

certainty which property is satisfied using a classical computer?

A quantum circuit can answer this question using just one query, with 0 probability of

error. Here’s the circuit:

|0⟩

...

|0⟩

|−⟩ |−⟩

𝐻

𝑈 𝑓

𝐻

𝐻 𝐻

𝐻 𝐻

6

Quantum Computation 1.3 Deutsch-Josza Algorithm

To analyze this algorithm, we make use of an identity which will appear a lot through-

out the rest of this class.

Proposition 1.1 (𝑛-qubit Hadamard). Let 𝑥 = 𝑥1𝑥2 · · · 𝑥𝑛 be the binary expansion of 𝑥. In

other words, 𝑥𝑖 is the 𝑖-th bit of 𝑥 when 𝑥 is written in binary. Then, we have the following

identity:

𝐻⊗𝑛 |𝑥⟩ = 𝐻 |𝑥1⟩ ⊗ 𝐻 |𝑥2⟩ ⊗ · · · ⊗ 𝐻 |𝑥𝑛⟩ (4)

=
(|0⟩ + (−1)𝑥1 |1⟩)√

2

⊗ · · · ⊗ (|0⟩ + (−1)𝑥𝑛 |1⟩)√
2

(5)

=
1√
2
𝑛

∑
𝑦∈{0,1}𝑛

(−1)𝑥·𝑦 |𝑦⟩ (6)

where 𝑥 · 𝑦 is the bit wise dot product of 𝑥 and 𝑦 (i.e., 𝑥 · 𝑦 = 𝑥1𝑦1 + · · · + 𝑥𝑛𝑦𝑛).

Question 9. Using the above identity, what is the state of the Deutsch-Jozsa algorithm

before the call to 𝑈 𝑓 ?

Question 10. What is the state of the Deutsch-Josza algorithm after the call to 𝑈 𝑓 ?

Question 11. Using the above identity again, what is the state of the Deutsch-Josza algo-

rithm after the second layer of 𝐻 gates?

7

Quantum Computation 1.3 Deutsch-Josza Algorithm

Question 12. What is the amplitude of |0 · · · 0⟩ if 𝑓 is constant?

Question 13. What is the amplitude of |0 · · · 0⟩ if 𝑓 is balanced?

Question 14. How can we use the measurement results to decide which property is held

for the function 𝑓 ?

It turns out that if we allow for randomized classical algorithms where we can make

errors, a simple sampling algorithm will very quickly be able to decide which property is

held with high confidence. Because of this, the quantum speedup is not as glamorous as

it seems.

8

Quantum Computation 1.4 Bernstein-Vazirani

1.4 Bernstein-Vazirani

Learning Outcomes
Upon following these notes and the corresponding lecture, students will be able to

• describe the property of the function the Bernstein-Vazirani Algorithm is trying

to determine.

• analyze the circuit of the Bernstein-Vazirani’s Algorithm.

The Bernstein-Vazirani algorithm is given black box access to a function 𝑓 : {0, 1}𝑛 →
{0, 1} that we know is in the form

𝑓𝑠(𝑥) = 𝑥 · 𝑠 (mod 2) (7)

for some mystery string 𝑠 ∈ {0, 1}𝑛 . The goal of this algorithm is to figure out what 𝑠 is.

Question 15. Let’s consider an example where 𝑛 = 5 and the secret string is 𝑠 = 10110.

What is 𝑓 (11101)?

Question 16. What is a strategy we can use using a classical computer to decide what 𝑠

is? What is the optimal query complexity classically?

9

Quantum Computation 1.4 Bernstein-Vazirani

Here is the circuit for the Bernstein-Vazirani algorithm:

|0⟩

...

|0⟩

|0⟩ |−⟩

𝐻

𝑈 𝑓

𝐻

𝐻 𝐻

𝐻 𝐻

𝑋 𝐻

Question 17. What is the state of the algorithm before the query to 𝑈 𝑓 ?

Question 18. What is the state of the algorithm after the query to 𝑈 𝑓 ?

Question 19. What is the state of the algorithm after the second layer of 𝐻 gates?

Bernstein and Vazirani chose this problem since there is a way to have all the amplitudes

for 𝑦 ≠ 𝑠 interfere destructively to become 0, while the amplitudes for 𝑠 all "point in the

same direction" and interfere constructively to become 1. We have found a way to achieve

a linear query complexity speed up using a quantum algorithm, but can we do even better?

Are there setting where we can achieve exponential speed up?

10

Quantum Computation 1.5 Simon’s Algorithm

1.5 Simon’s Algorithm

Learning Outcomes
Upon following these notes and the corresponding lecture, students will be able to

• describe the property of the function the Simon’s Algorithm is trying to deter-

mine.

• prove the generalized Birthday paradox.

• analyze how hard it is to decide the property classically.

• analyze the circuit of the Bernstein-Vazirani’s Algorithm.

In this problem, we will consider a function with an 𝑛 bit input and an 𝑛 bit output.

The function 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 will encode a secret string 𝑠 in the following way.

𝑓 (𝑥) = 𝑓 (𝑦) ⇐⇒ 𝑥 ⊕ 𝑦 = 𝑠 ⇐⇒ 𝑥 ⊕ 𝑠 = 𝑦 (8)

As we have been doing, given blackbox access to this function, the goal is to find 𝑠.

Question 20. Let 𝑓 be a function that takes an 𝑛 bit input and satisfies the property above.

What is the size of the domain of this function? What is the size of the range of this

function?

To determine what 𝑠 is, we need to find a pair 𝑥 and 𝑦 such that 𝑓 (𝑥) = 𝑓 (𝑦), and then

take the sum module 2 of these strings to recover 𝑠.

Question 21. How many queries will we need classically in the worst case to determine

𝑠?

11

Quantum Computation 1.5 Simon’s Algorithm

What if we use a randomized classical algorithm? In this case, we can show that we

will require approximately

√
2
𝑛 = 2

𝑛/2
queries. Let’s try to prove this together. To prove

this, we will use a general version of the Birthday Paradox.

Suppose we have a set of items, each with a uniformly random tag from {1, 2, . . . , 𝑇}.
How many samples do we need to collect before we have at least two items with the same

tag with probability greater than 1/2?

Question 22. What is the probability that a random pair of items have matching tags?

Question 23. Suppose we have chosen 𝑚 items so far. How many different ways can we

pair two items from this set (the tags do not have to match)?

Question 24. Determine how many items 𝑚 we have to choose until the probability that

there is a collision is over 1/2.

Now suppose that this randomized algorithm queries the function using 𝑡 bit strings,

𝑥1, 𝑥2, . . . , 𝑥𝑡 .

• If we find a pair such that 𝑓 (𝑥𝑖) = 𝑓 (𝑥 𝑗), then we are done.

• If none of these 𝑥′
𝑖
𝑠 are matches, then we know that 𝑠 ≠ 𝑥𝑖 ⊕ 𝑥 𝑗 for all 𝑖 , 𝑗 pairs. In other

words, we have ruled out

(
𝑡

2

)
∼ 𝑡2

2
possibilities, and all other choices are equally likely.

In the worst case, we need to find 𝑡 such that the number of items we rule out equals

all possible inputs.

We can conclude then, that classically we need at least Ω(2𝑛/2) queries.

12

Quantum Computation 1.5 Simon’s Algorithm

How can we solve this problem using a quantum computer? The unitary encoding the

function would act as follows:

𝑈 𝑓 (®𝑥, ®0) = (®𝑥, ®0 ⊕ 𝑓 (𝑥)) (9)

or in ket notation

𝑈 𝑓 |𝑥⟩ |0⟩ = |𝑥⟩ | 𝑓 (𝑥)⟩ . (10)

As a circuit, they would look like the following.

|𝑥1⟩

...

|𝑥𝑛⟩

|0⟩

...

|0⟩

𝑥

𝑈 𝑓

𝑥

𝑛 Ancilla bits f(x)

Now the circuit for solving Simons problem is just a small addition to the above circuit

and is drawn below.

|0⟩

...

|0⟩

|0⟩

...

|0⟩

𝑛 qubits

𝐻

𝑈 𝑓

𝐻

𝑥

𝐻 𝐻

𝑛 qubits f(x)

The neat thing about this algorithm is that we don’t actually care about what our

measurement result is, but just the interference pattern that is created. Let’s go through

the circuit to see what we mean by this.

13

Quantum Computation 1.5 Simon’s Algorithm

Question 25. What is the state of the algorithm before the 𝑈 𝑓 gate?

Question 26. What is the state of the algorithm after the 𝑈 𝑓 gate?

It turns out that we can measure the last 𝑛 qubits before applying the 𝐻 gates on the

first 𝑛 qubits. The output distribution will be the same in either case!

Question 27. Suppose that upon measuring the second register at this stage, we get the

result |𝑤⟩. What is the state of the first register?

It would be great if we could have multiple copies of the above state, because then we

can directly measure the first register to recover all the relevant states. The problem is that

if we rerun this experiment, it is extremely unlikely (how unlikely?) that we measure |𝑤⟩
again!

Instead, what this circuit is doing is measuring in the 𝐻 basis by applying the 𝐻 gates.

14

Quantum Computation 1.5 Simon’s Algorithm

Question 28. What is the state of the superposition after the final Hadamard gates?

Question 29. Suppose we measured the first register and observe some random |𝑧⟩. What

can we say about the coefficient of such a |𝑧⟩?

This can be analyzed using modular arithmetic:

𝑥 · 𝑧 mod 2 = 𝑦 · 𝑧 mod 2 (11)

(𝑥 − 𝑦) · 𝑧 mod 2 = 0. (12)

When working in binary, 𝑥 − 𝑦 is equivalent to 𝑥 ⊕ 𝑦. Therefore what we get is that for the

string 𝑧 we recovered,

(𝑥 ⊕ 𝑦) · 𝑧 = 𝑠 · 𝑧 = 0. (13)

So in 1 run of Simon’s algorithm we found a random 𝑧 that is orthogonal to 𝑠!

The measurement yields a random 𝑧 such that 𝑠 · 𝑧 ≡ 0(mod 2). We can repeat this

𝑂(𝑛) times to get a set of linearly independent strings who are all orthogonal to 𝑠. Once

we have this, we can use Gaussian elimination (mod 2) to find 𝑠 in 𝑂(𝑛3) time.


− − − 𝑧1 − − −
− − − 𝑧2 − − −

...

− − − 𝑧𝑚 − − −


·

|
𝑠

|

 =


0

...

0

 (14)

This gives us a polynomial time quantum algorithm to find 𝑠, whereas classically the

best we could do was still exponential.

15

Quantum Computation 1.6 Query Based Algorithm Wrap Up

1.6 Query Based Algorithm Wrap Up

We’ve looked at several algorithms in this strange query model, which achieves speedups

in a non-standard way. You may be suspicious that we are sweeping too many details

under the rug, and for that you would be correct. To actually implement Simon’s algorithm,

you need an actual circuit to compute 𝑓 , and when given to the actual circuit (as opposed to

a black-box oracle), classical algorithms can exploit the details of the circuit to significantly

reduce the number of queries.

Unfortunately, because of this reason these algorithms we have seen so far are not

actually very practical for finding ways to speed up our computations. However, they

provided valuable practice using some tools that will be useful for analyzing other quan-

tum algorithms. Furthermore, I hope it gave you a peek into the workflow of a computer

science researcher, and some ways that we try to separate the power of classical and quan-

tum computing. It is not perfect, but it provides some concrete examples and intuition

behind why quantum computers may excel at certain tasks over classical computers.

16

Quantum Computation Computation 2: Quantum Fourier Transform and Shor’s Algorithm

※ Computation 2: Quantum Fourier Transform and Shor’s Algorithm

"How dare we dream

Of solving problems that else would take more time

Than has passed since the cosmos’s Big Bang!"

- Peter Shor

2.1 Quantum Fourier Transform

Learning Outcomes
Upon following these notes and the corresponding lecture, students will be able to

• describe and analyze the effect of the quantum Fourier transform on a given input

state.

We begin by reviewing how to transition between the bit string and integer represen-

tation. To compute the value of the bit string 11001, we multiply it as follows:

1 · 2
4 + 1 · 2

3 + 0 · 2
2 + 0 · 2

1 + 1 · 2
0 = 16 + 8 + 1 = 25. (15)

More generally, if we have a string 𝑥 = 𝑥1 · · · 𝑥𝑛 where 𝑥𝑖 is the 𝑖-th bit of 𝑥, we can write

this as an integer using the sum

𝑥1 · 2
𝑛−1 + 𝑥2 · 2

𝑛−2 + · · · + 𝑥𝑛 · 2
0 =

𝑛∑
𝑘=1

𝑥𝑘 · 2
𝑛−𝑘 . (16)

Throughout this section, we will frequently take complex numbers to the power of

integers, and it will be useful to have a way to toggle between the integer representation

of the power and the bit string representation.

𝜔𝑥 = 𝜔𝑥1·2𝑛−1+𝑥2·2𝑛−2+···+𝑥𝑛2
0

(17)

= 𝜔𝑥1·2𝑛−1 · 𝜔𝑥2·2𝑛−2 · · · · · 𝜔𝑥𝑛 ·20

(18)

=

𝑛∏
𝑘=1

𝜔𝑥𝑘 ·2𝑛−𝑘
(19)

For the rest of the course, we will use the shorthand 𝑁 = 2
𝑛
. One important reason

we will be interested in complex numbers is because they are a great tool for analyzing

periodic functions. In particular, the 𝑁-th roots of unity give us a way to keep track of the

"period" in the way a clock would.

17

Quantum Computation 2.1 Quantum Fourier Transform

Figure 1: Taken from Python Numerical Methods

You may have learned about the Discrete Fourier Transform (DFT). The DFT is often

used for signal processing, where a signal could be a sound wave, radio signal, or daily

temperature readings. Usually we describe these signals in the time domain. Instead of

doing this, we can take a slice of time to describe a signal in the frequency domain. By

doing this, we have a discrete set of items to build our wave out of, and we can safely

discard frequencies that are too high or low for the human ear.

18

Quantum Computation 2.1 Quantum Fourier Transform

Early in the investigation of quantum algorithms, researchers figured out that a quan-

tum circuit can compute the Fourier transform very efficiently when the input vector is

encoded in the amplitudes of a quantum state. Note that this is not necessarily a faster

way to compute the classical Fourier transform, since the output is only accessible via

quantum measurement.

Definition 2.1 (Quantum Fourier Transform). Let 𝑁 = 2
𝑛
. For 𝑥 ∈ {0, 1, . . . , 𝑁 − 1}:

• Standard basis state: A length 𝑁 column vector with a 1 in the 𝑘-th location

|𝑘⟩ =



0

...

0

1

0

...

0


. (20)

• Fourier basis state (𝜔 = 𝑒2𝜋𝑖/𝑁
is the first 𝑁-th root of unity):

|𝑘⟩ = 1√
𝑁



𝜔0

𝜔𝑘

𝜔2𝑘

...

𝜔(𝑁−1)𝑘


. (21)

The 𝑛-qubit Quantum Fourier Transform or 𝑄𝐹𝑇𝑁 is the transformation that performs

𝑄𝐹𝑇𝑁 |𝑥⟩ = |𝑥̃⟩ = 1√
𝑁

𝑁−1∑
𝑦=0

𝜔𝑥·𝑦 |𝑦⟩ (22)

We can model the action of 𝑄𝐹𝑇𝑁 by the matrix

𝑄𝐹𝑇𝑁 :=
1√
𝑁



1 1 1 · · · 1

1 𝜔 𝜔2 · · · 𝜔𝑁−1

1 𝜔2 𝜔4 · · · 𝜔2(𝑁−1)

...
...

...
. . .

...

1 𝜔𝑁−1 𝜔2(𝑁−1) · · · 𝜔(𝑁−1)(𝑁−1)


. (23)

19

Quantum Computation 2.1 Quantum Fourier Transform

Let’s get familiar with the Fourier basis by working through an explicit example.

Question 30. Write down the 1-qubit QFT matrix. Use the matrix to find all of the Fourier

basis states.

Question 31. Write down the 2-qubit QFT matrix. Use the matrix to find the first Fourier

basis state, |1̃⟩.

Let’s see if we can describe Fourier basis states for the general case. To do this, we will

use the integer to bit string mapping we discussed earlier. Recall that the mapping we are

interested in is

|𝑥⟩ ↔ 1√
𝑁

𝑁−1∑
𝑦=0

𝜔𝑥·𝑦 |𝑦⟩ . (24)

Let 𝑦 = 𝑦1 · · · 𝑦𝑛 be the bitstring representation of 𝑦.

Question 32. Write down the value of 𝑦 using the bits 𝑦1, . . . , 𝑦𝑛 .

Let’s use this to rewrite the power of the 𝑁-th root of unity.

𝜔𝑥𝑦 = 𝜔𝑥[𝑦1·2𝑛−1+𝑦2·2𝑛−2+···+𝑦𝑛 ·20]
(25)

=

𝑁∏
𝑗=1

𝜔𝑥·𝑦 𝑗 ·2𝑛−𝑗 . (26)

20

Quantum Computation 2.1 Quantum Fourier Transform

We can then rewrite the Fourier basis state as

|𝑥̃⟩ = 1√
𝑁

𝑁−1∑
𝑦=0

𝜔𝑥·𝑦 |𝑦⟩ (27)

=
1√
𝑁

𝑁−1∑
𝑦=0

𝑁∏
𝑗=1

𝜔𝑥·𝑦𝑗 ·2𝑛−𝑗 |𝑦⟩ (28)

=
1√
𝑁

(
|0⟩ + 𝜔𝑥·2𝑛−1 |1⟩

)
⊗

(
|0⟩ + 𝜔𝑥·2𝑛−2 |1⟩

)
⊗ · · · ⊗

(
|0⟩ + 𝜔𝑥·20 |1⟩

)
(29)

Question 33. Consider a 3-qubit Fourier transform. What is |7̃⟩? What is |7̃⟩ written in

the form of equation (29)?

Question 34. What is the amplitude of |101⟩ in |7̃⟩?

Equation (29) gives us a way to view the mapping as a tensor product of 𝑛 qubits:

|𝑥⟩ = |𝑥1⟩ ⊗ · · · ⊗ |𝑥𝑛⟩ (30)

↔ 1√
𝑁

(
|0⟩ + 𝜔𝑥·2𝑛−1 |1⟩

)
⊗

(
|0⟩ + 𝜔𝑥·2𝑛−2 |1⟩

)
⊗ · · · ⊗

(
|0⟩ + 𝜔𝑥·20 |1⟩

)
. (31)

To summarize the algorithm, we will perform the following mapping between qubits and

then reverse the order of the qubits using swap gates at the end:

|𝑥𝑘⟩ →
1√
2

(
|0⟩ + 𝜔𝑥·2𝑘−1 |1⟩

)
. (32)

Note that the state is like a |+⟩ state with an extra relative phase. Let’s try to determine

what this relative phase is.

21

Quantum Computation 2.1 Quantum Fourier Transform

Before stating it generally, let’s take a closer look at this for a particular example. Let’s

look at |7̃⟩ from the 3 qubit Fourier transform we were studying earlier.

Question 35. The input to the QFT circuit will be |7⟩ = |1⟩ ⊗ |1⟩ ⊗ |1⟩. Write down the rel-

ative phase of each qubit after the QFT circuit is applied using the bitstring representation

of 𝑥.

22

Quantum Computation 2.1 Quantum Fourier Transform

We can analyze the amplitudes more generally for an 𝑛-qubit QFT circuit as follows.

𝜔𝑥·2𝑛−𝑘 = 𝑒
2𝜋𝑖·2𝑛−𝑘

2
𝑛 ·𝑥

(33)

= 𝑒
2𝜋𝑖

[
2
𝑛−𝑘
2
𝑛

]
[𝑥1·2𝑛−1+𝑥2·2𝑛−2+···+𝑥𝑛 ·2𝑛−𝑛]

(34)

=

𝑛∏
𝑗=1

𝑒
2𝜋𝑖

[
2
𝑛−𝑘
2
𝑛

]
·𝑥 𝑗 ·2𝑛−𝑗

(35)

=

𝑛∏
𝑗=1

𝑒
2𝜋𝑖

[
2
2𝑛−𝑘−𝑗

2
𝑛

]
·𝑥 𝑗

(36)

=

𝑛∏
𝑗=𝑛−𝑘+1

𝑒2𝜋𝑖[2𝑛−𝑘−𝑗]·𝑥 𝑗 . (37)

Note the index change in the last line. In the case where 𝑛 − 𝑘 − 𝑗 < 0, then the exponent

is an integer multiple of 2𝜋𝑖, which makes the term in the product always equal 1. The

condition can be simplified to 𝑛 − 𝑘 < 𝑗, meaning we can discard the terms in the product

less than or equal to 𝑛 − 𝑘.

The final line gives insight into what the circuit may need to look like. Since 𝑥 𝑗 is the

𝑗-th bit of 𝑥, we see that when 𝑥 𝑗 = 0, it will kill off that entire term (set it to 1). In other

words, we only want to apply the phase when 𝑥 𝑗 = 1. This sounds a lot like a controlled

gate!

Question 36. What is the relative phase of the second qubit after applying a QFT circuit

to the three qubit input state |101⟩?

The controlled gate we want to apply has to apply a relative phase conditioned on the

𝑥 𝑗-th qubit being 1. To do this, let’s define a new gate:

𝑃𝑎 =

[
1 0

0 𝑒2𝜋𝑖/2
𝑎

]
. (38)

23

Quantum Computation 2.1 Quantum Fourier Transform

We have all the pieces now to construct the algorithm.

Algorithm 1 Quantum Fourier Transform

1: for 𝑘 = 1 to 𝑛 do ⊲ Apply |𝑥𝑘⟩ → |0⟩ + 𝑒2𝜋𝑖·𝑥·2𝑘−1 |1⟩
2: Apply 𝐻 to |𝑥𝑘⟩
3: for 𝑗 = 𝑘 + 1 to 𝑛 do
4: if 𝑥 𝑗 = 1, apply 𝑅 𝑗−𝑘+1

5: end for
6: end for
7: Reorder the qubits using swap gates

Question 37. Draw the Quantum Fourier Transform circuit for 4 qubits.

24

Quantum Computation 2.2 Properties of the Fourier Transform

2.2 Properties of the Fourier Transform

Learning Outcomes
Upon following these notes and the corresponding lecture, students will be able to

• describe the property of the function period finding is trying to decide.

• produce and interpret a continued fractions representation of a decimal valued

number.

• analyze the period finding algorithm and its correctness.

The power of the QFT is in its ability to represent periodic sequences or functions. This

may mean that it is also effective at finding periodic structure in sequences as well! Before

exploring this thought, let’s look at some properties of the Fourier Transform.

Let me introduce some more notation we will use through the remainder of this section.

We’ve learned and practiced the mapping from a standard basis state to a Fourier basis

state. What happens if we apply the Fourier transform to a superposition of standard

basis states?

Question 38. Consider the two qubit state

|𝜓⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩ + 𝛼2 |2⟩ + 𝛼3 |3⟩ . (39)

What is the result of applying the QFT to this state?

More generally, if we have an 𝑛 qubit state

|𝜓⟩ =
𝑁−1∑
𝑥=0

𝛼𝑥 |𝑥⟩ (40)

and apply 𝑄𝐹𝑇𝑁 to it, we get the following:

𝑄𝐹𝑇𝑁 |𝜓⟩ = 𝑄𝐹𝑇𝑁

(
𝑁−1∑
𝑥=0

𝛼𝑥 |𝑥⟩
)

(41)

25

Quantum Computation 2.2 Properties of the Fourier Transform

=

𝑁−1∑
𝑥=0

𝛼𝑥𝑄𝐹𝑇𝑁 |𝑥⟩ (42)

=

𝑁−1∑
𝑥=0

𝛼𝑥
1√
𝑁

𝑁−1∑
𝑦=0

𝜔𝑥·𝑦 |𝑦⟩ (43)

=

𝑁−1∑
𝑦=0

𝑁−1∑
𝑥=0

1√
𝑁
𝛼𝑥𝜔

𝑥·𝑦

︸ ︷︷ ︸
𝛼𝑦

|𝑦⟩ (44)

We will call the amplitudes 𝛼𝑦 the Fourier amplitudes. Using the vector notation, this

means the QFT is doing the following transformation:

𝛼0

𝛼1

...

𝛼𝑁−2

𝛼𝑁−1


𝑄𝐹𝑇𝑁−→



𝛼̃0

𝛼̃1

...�𝛼𝑁−2�𝛼𝑁−1


(45)

Question 39. Consider the state |𝜓⟩ from Question 38. What is 𝛼̃3?

2.2.1 The Fourier transform converts between translation and phase

Let

|𝜓⟩ =
𝑁−1∑
𝑥=0

𝛼𝑥 |𝑥⟩ (46)

and

|𝜓+𝑗⟩ =
𝑁−1∑
𝑥=0

𝛼𝑥 |𝑥 + 𝑗 mod 𝑁⟩ =
𝑁−1∑
𝑥=0

𝛼𝑥 |𝑥 + 𝑗⟩ . (47)

The +𝑗 state is simply the state we get by shifting the amplitudes cyclically by 𝑗 positions.

The last inequality is just a notational difference, where we will abbreviate the mod 𝑁 in

this notation.

26

Quantum Computation 2.2 Properties of the Fourier Transform

Question 40. Suppose we have the following two qubit state:

|𝜓⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩ + 𝛼2 |2⟩ + 𝛼3 |3⟩ . (48)

What is |𝜓+1⟩?

Question 41. Apply the QFT to |𝜓+𝑗⟩.

Again, let’s take a look at what happens to an 𝑛-qubit state |𝜓+𝑗⟩ and apply the Fourier

transform to it.

|𝜓+𝑗⟩ =
𝑁−1∑
𝑦=0

𝑁−1∑
𝑥=0

𝛼𝑥𝜔(𝑥+𝑗)·𝑦
√
𝑁

|𝑦⟩ (49)

=

𝑁−1∑
𝑦=0

𝜔 𝑗𝑦
𝑁−1∑
𝑥=0

𝛼𝑥𝜔𝑥·𝑦
√
𝑁︸ ︷︷ ︸

𝛼̃𝑦

|𝑦⟩ (50)

=

𝑁−1∑
𝑦=0

𝜔 𝑗𝑦𝛼𝑦 |𝑦⟩ . (51)

We can think of the index in the standard basis as representing the index of a particular

wave 𝑥 that we use to construct our periodic function. When we translate our position by

applying the +𝑗 transformation and apply the Fourier transform after this, we now want

to pick the 𝑥 + 𝑗-th wave instead.

27

Quantum Computation 2.2 Properties of the Fourier Transform

2.2.2 Fourier Transform of Factors

Suppose 𝑟 is an integer that divides 𝑁 (𝑁/𝑟 is an integer). Define the state

|𝜙𝑟⟩ =
√

𝑟

𝑁

𝑁
𝑟 −1∑
𝑘=0

|𝑘𝑟⟩ . (52)

Question 42. Let 𝑁 = 21 and 𝑟 = 3. What are the amplitudes that appear in this vector?

Draw them in the figure below.

Proposition 2.2. Let 𝑟 be an integer that divides 𝑁 . Then,

𝑄𝐹𝑇𝑁 |𝜙𝑟⟩ = |𝜙𝑁/𝑟⟩ . (53)

Question 43. Continuing the example from Question 42, what is |𝜙𝑁/𝑟⟩?

Question 44. Still continuing the example from Question 42, what is 𝑄𝐹𝑇𝑁 |𝜙𝑟⟩?

28

Quantum Computation 2.2 Properties of the Fourier Transform

2.2.3 Periodic Superpositions with a Shift

The crux of Shor’s algorithm is the solution to the following problem: Suppose we have a

periodic superposition but with a shift:√
𝑟

𝑁

𝑁
𝑟 −1∑
𝑘=0

|𝑘𝑟 + 𝑙⟩ . (54)

Can we find an algorithm to find 𝑟?

To further complicate the problem, every time we generate a new version of the state,

the shift constant 𝑙 will be different. This causes issues later, because when we use the

QFT for factoring, the offset does not allow us to cleanly divide 𝑁 in the way that it does

in Proposition 2.2.

Let’s formalize the problem. We consider starting with some state

|𝜙𝑟⟩ =
1√
𝑠

𝑠−1∑
𝑘=0

|𝑘𝑟 + 𝑙⟩ (55)

where we have defined 0 ≤ 𝑙 < 𝑟 and 𝑠 =
⌊
𝑁
𝑟

⌋
. There are two challenges we will have to

resolve to correctly figure out what 𝑟 is.

1. 𝑁 will generally be a power of 2, meaning that 𝑟 does not divide 𝑁 most of the time.

2. The shift 𝑙 causes the QFT to not work as cleanly.

29

Quantum Computation 2.2 Properties of the Fourier Transform

Proposition 2.3. Consider applying an 𝑛-qubit QFT to some state

|𝜙𝑟⟩ =
1√
𝑠

𝑠−1∑
𝑘=0

|𝑘𝑟 + 𝑙⟩ . (56)

We can express this state as

𝑄𝐹𝑇𝑁 |𝜙𝑟⟩ =
𝑁−1∑
𝑎=0

𝛼̃𝑎 |𝑎⟩ . (57)

If we measure this output state, then with high probability we measure a value 𝑎 such that

1.

��𝑎 − 𝑘 𝑁
𝑟

�� ≤ 1

2
for some 𝑘.

2. gcd(𝑘, 𝑟) = 1.

The first property can be rewritten as���� 𝑎𝑁 − 𝑘

𝑟

���� ≤ 1

2𝑁
. (58)

From our measurement result, we know what 𝑎 is, and 𝑁 depends on the system size.

What the above equation is saying is that
𝑎
𝑁 is a very close approximation of

𝑘
𝑟 . We can use

this information to find 𝑘 and 𝑟, independent of what 𝑙 is!

30

Quantum Computation 2.3 Period Finding

2.3 Period Finding

Let’s look at our first algorithm that uses the QFT. This will be another query based

algorithm, meaning that we will have access to some blackbox function, and are trying to

decide some property for this function.

Suppose we have some function 𝑓 : {0, . . . , 𝑁 − 1} → {0, . . . , 𝑀 − 1} or alternatively

in the bitstring notation, 𝑓 : {0, 1}𝑛 → {0, 1}𝑚 . Here, we’ve defined the integers such that

𝑁 = 2
𝑛

and 𝑀 ≤ 2
𝑚

. This function will also have the property that for some integer 𝑟,

𝑓 (𝑥) = 𝑓 (𝑦) ⇔ 𝑥 − 𝑦 is an integer multiple of 𝑟 ≤ 𝑀 <
√
𝑁. (59)

Given quantum access to this function via a unitary 𝑈 𝑓 , the goal is to find 𝑟.

Example.

This problem is interesting because there is no known efficient classical algorithm! The

best we can do is a brute force search for "collisions" 𝑓 (𝑥) = 𝑓 (𝑦), which on average will

require ∼ 2
𝑛/2

time.

Question 45. Consider the function 𝑓 : {0, 1}4 → {0, 1}4
, where

𝑓 (𝑠) = 3
𝑠

mod 16. (60)

What is the period of 𝑓 ?

31

Quantum Computation 2.3 Period Finding

I’ll begin by just writing out the algorithm, and we will go over the analysis after seeing

it. The algorithm will use two registers, the first using 𝑛 qubits (to store numbers mod 𝑁),

and the second register will have ⌈log 𝑀⌉ qubits to store numbers mod 𝑀. We will also

have quantum access to the function 𝑓 via a unitary 𝑈 𝑓 which has the action

𝑈 𝑓 |𝑥⟩ |𝑦⟩ = |𝑥⟩ |𝑦 ⊕ 𝑓 (𝑥)⟩ . (61)

Algorithm 2 Period Finding

1: Start with |0 . . . 0⟩ |0 . . . 0⟩
2: Apply 𝐻⊗𝑛

on the first register to get
1√
𝑁

∑𝑁−1

𝑦=0
|𝑦⟩ |0⟩

3: Apply 𝑈 𝑓

4: Measure the 2nd register.

5: Ignore the 2nd register and apply 𝑄𝐹𝑇𝑁 (mod 𝑁) to the 1st register.

6: Measure the 1st register to get value 𝑎.

7: Postprocessing: Use 𝑎 and 𝑁 to find 𝑘 and 𝑟.

|0⟩

...

|0⟩

|0⟩

...

|0⟩

𝑛 qubits

𝐻

𝑈 𝑓

𝑄𝐹𝑇𝑁 𝑦

𝐻

𝑚 qubits f(y)

Let’s go through each step starting at 3 to see what the state is. At step 3, we will have

prepared the state

1√
𝑁

𝑁−1∑
𝑦=0

|𝑦⟩ | 𝑓 (𝑦)⟩ (62)

Now recall that the function 𝑓 (𝑦) is periodic in 𝑟, meaning that for every 𝑓 (𝑦), there will

be 𝑟 inputs that map to it.

32

Quantum Computation 2.3 Period Finding

Question 46. Consider the function we used in Question 45. If we had unitary access to

this function and measured |9⟩ in the second register, what is the state of the algorithm?

More generally, measuring the second register will allow us to collapse into a super-

position of inputs that all map to the same state. More concretely, suppose we measured

the value 𝑤 in the second register. Then the first register will be an even superposition of

all | 𝑗𝑟 + 𝑙⟩ such that 𝑓 (𝑗𝑟 + 𝑙) = 𝑤, and 0 ≤ 𝑗 < ⌊𝑁𝑟 ⌋, 0 ≤ 𝑙 ≤ 𝑟 − 1. We can write this in ket

notation too:

1√
𝑠

𝑠−1∑
𝑗=0

| 𝑗𝑟 + 𝑙⟩ |𝑤⟩ 𝑠 :=

⌊
𝑁

𝑟

⌋
. (63)

We can safely ignore the second register for the remaining analysis, because the two

registers are now in a product state.

By Proposition 2.3, we know that applying a QFT to this state and measuring will allow

us with high probability to observe a state 𝑎 such that����𝑎 − 𝑘
𝑁

𝑟

���� ≤ 1

2

gcd(𝑘, 𝑟) = 1. (64)

The above equation can be combined with our assumption that 𝑟 <
√
𝑁 to get���� 𝑎𝑁 − 𝑘

𝑟

���� ≤ 1

2𝑁
≤ 1

2𝑟2

. (65)

We will be using continued fractions to find 𝑘 and 𝑟.

We will assume that gcd(𝑘, 𝑟) = 1. To analyze the final step, let’s look at how continued

fractions works. Let 𝛾 = 𝑎
𝑁 . We know that with high probability,����𝛾 − 𝑘

𝑟

���� ≤ 1

2𝑟2

. (66)

The continued fractions representation of a real number is a sequence of integers

𝑎0, 𝑎1, . . . , 𝑎𝑛 as:

𝛾 ≈ 𝑎0 +
1

𝑎1 + 1

𝑎2+ 1

. . . 1

𝑎𝑛

(67)

We can clip this sequence at some 𝑎𝑘 to get an approximation of 𝛾. We will define the 𝑃𝑘

and 𝑄𝑘 as the numerator and denominator we get respectively for the approximation of

𝛾.

33

Quantum Computation 2.3 Period Finding

Question 47. Let 𝛾 = 7.27. Find the continued fractions representation of 𝛾. What is 𝑃3

and 𝑄3?

Once the continued fractions representation is found, we get a series of approximations

to 𝛾:

𝑃0

𝑄0

,
𝑃1

𝑄1

,
𝑃2

𝑄2

, · · · , 𝑃𝑛

𝑄𝑛
(68)

such that

𝑄0 < 𝑄1 < 𝑄2 < · · · < 𝑄𝑛 . (69)

Each of the 𝑄 𝑗’s are candidates for 𝑟, and with access to the function 𝑓 we can directly test

the 𝑛 candidates to see if we have the correct period. We know this will happen by the

theorem stated below.

Theorem 2.4 (Proven in Nielsen and Chuang). If

��𝛾 − 𝑘
𝑟

�� ≤ 1

𝑟2
, then 𝑘 = 𝑃𝑗 and 𝑟 = 𝑄 𝑗 for

some 𝑗.

Our algorithm will try each one and take the smallest 𝑄 𝑗 such that

𝑥𝑄 𝑗 = 1 mod 𝑁. (70)

We end the section with two important facts:

• If 𝛾 is a rational number, eventually for some 𝑛,
𝑃𝑛

𝑄𝑛
= 𝛾.

•

𝑃𝑗

𝑄 𝑗
is the best approximation to 𝛾 by any ratio of integers whose denominator is ≤ 𝑄 𝑗 .

34

Quantum Computation 2.4 RSA and Number Theory

2.4 RSA and Number Theory

"We know more than we did before. Let’s use that."

- Cypher

Learning Outcomes
Upon following these notes and the corresponding lecture, students will be able to

• explain how the RSA algorithm works, and describe why it is difficult for classical

algorithms to break.

• apply properties about integers mod 𝑁 .

• analyze the period finding algorithm and its correctness.

We’ve seen an example of private key cryptography when talking about quantum

money, but here we will be interested in public key cryptography. In such a scheme,

there exists what is called a public key, which anyone can easily know and uses to encrypt

a message. On the other hand, each receiving party will have their own private key, which

is required to efficiently decrypt a message.

In this section, we will take a look at the RSA protocol, which is one of the most

commonly used public key cryptosystems today.

Question 48. Suppose the public keys are 𝑒 = 5 and 𝑀 = 26. If we encrypt the message

"B" which we will represent using the integer 2, what is the cypher text?

Question 49. Show that 𝑑 = 17 is a valid private key to decrypt the message.

35

Quantum Computation 2.4 RSA and Number Theory

More generally, the following is the description of the algorithm.

1. Choose two prime numbers 𝑝 and 𝑞.

2. Multiply them to form 𝑀.

3. Compute the "Euler function" of 𝑀, 𝜙(𝑀).

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26

4. Choose an encryption key 𝑒 such that

• 1 < 𝑒 < 𝜙(𝑀).

• gcd(𝑒 , 𝑀) = 1 and gcd(𝑒 , (𝑝 − 1)(𝑞 − 1)) = 1.

5. Choose 𝑑 such that

𝑑𝑒(mod 𝜙(𝑁)) = 1. (71)

• Public keys are 𝑒 and 𝑀.

• Private keys are 𝑝, 𝑞, 𝑑.

If you know 𝑝, 𝑞, 𝑒, you can use Euclid’s algorithm to efficiently compute 𝑑.

To encrypt a message, we would use the following protocol. Let 𝑚 be the plaintext

message. The cypher text 𝑐 is computed by

𝑐 = 𝑚𝑒
mod 𝑀. (72)

To decrypt the message, we simply perform

𝑚 = 𝑐𝑑 mod 𝑀. (73)

If an attacker intercepted the cypher text 𝑐, it would be practically impossible to decode

it unless they knew what 𝑑 was.

36

Quantum Computation 2.4 RSA and Number Theory

The computer science community believes that finding the plaintext𝑚 from the cypher-

text 𝑐 requires solving an exponentially hard problem. Knowing whether this is true or

not has large implications for the security of information, leading to lots of interest in the

complexity of the factoring problem.

As usual, let’s take a look at how difficult it would be to factor numbers classically.

Note that when we analyze the hardness of factoring, we are interested in the number of

digits used to represent 𝑀, which is 𝑤 = 𝑂(log 𝑀). So an efficient algorithm would mean

an algorithm that runs in polynomial time with respect to 𝑤 = 𝑂(log 𝑀).
The trivial algorithm would simply try every number 𝑗 ∈ [1,

√
𝑀] and check if 𝑗 divides

𝑀. This would require 𝑂(2𝑤) iterations.

Other known classical algorithms include

• Quadratic Field Sieve: 𝑂
(
2
𝑐·
√
𝑤
)

• Number Field Sieve: 𝑂
(
2
𝑚1/3

)
Though still exponential, these improvements were enough to require RSA schemes to go

up from 512- to 768-bit encryption schemes to the sizes we see today.

In 1994, Peter Shor developed an algorithm to solve factoring on a quantum computer

using just poly(log 𝑀) gates. Note that this is not even the number of queries, it is the

exact circuit size.

Going beyond RSA, another popular public-key cryptosystem is called Diffie-Hellman,

which requires solving the discrete log problem (also believed to be difficult for classical

computers). Shor’s algorithm for factoring is also able to solve discrete log.

Shor’s algorithm critically uses period finding, using a reduction from period finding

to factoring. In other words, he shows how an efficient algorithm for period finding can

be used to solve factoring.

We know that the quantum algorithm for period finding only uses𝑂(1)queries to 𝑓 . We

would like to see if the unitary representing the query can be efficiently implemented. This

is possible to analyze because we are interested in a particular function when factoring,

namely searching for the period of the function

𝑓𝑥(𝑠) := 𝑥𝑠 mod 𝑀 (74)

where gcd(𝑥, 𝑀) = 1 and 𝑀 = 𝑝 · 𝑞. If we can find an efficient classical algorithm to

compute 𝑥𝑠 mod 𝑀, we will know what the classical circuit looks like, then convert it

into a reversible gate which will represent 𝑈 𝑓 .

37

Quantum Computation 2.4 RSA and Number Theory

In this section, we’ll be proving some basic number theoretic facts related to the

factoring problem. First, we need to confirm that 𝑓𝑥(𝑠) defined above is indeed periodic.

Lemma 2.5. Let 𝑥, 𝑀 be integers such that gcd(𝑥, 𝑀) = 1. Then

𝑥𝑠 mod 𝑀 (75)

is periodic in 𝑥.

Sketch. If we tried computing the powers of 𝑥 mod 𝑀, since the function can have only 𝑀

distinct outcomes, if we take more than 𝑀 powers we will eventually get a repeat. Let 𝑎

and 𝑏 be two powers where the equation evaluates to the same integer. We can express

this mathematically as

𝑥𝑎 mod 𝑀 = 𝑥𝑏 mod 𝑀 (76)

𝑥𝑏 − 𝑥𝑎 = 𝑘 · 𝑀 (77)

𝑥𝑎
(
𝑥𝑏−𝑎 − 1

)
= 𝑘 · 𝑀 (78)

for some integer 𝑘. Since gcd(𝑥, 𝑀) = 1, 𝑥 and 𝑀 do not share any prime factors. Thus

for the equality to hold, 𝑀 must evenly divide 𝑥𝑏−𝑎 − 1:

𝑥𝑏−𝑎 − 1 = 𝑘′𝑀 (79)

𝑥𝑏−𝑎 = 1 + 𝑘′𝑀 (80)

⇒ 𝑥𝑏−𝑎 = 1 mod 𝑀. (81)

□

Furthermore, we can show that the period of the function is the smallest positive

integer 𝑠 such that 𝑥𝑠 = 1 mod 𝑀.

In practice, finding a non-trivial square root of 1 mod 𝑀 is sufficient for factoring.

38

Quantum Computation 2.4 RSA and Number Theory

Lemma 2.6. Given a composite number 𝑁 and an integer 𝑥 such that

𝑥2 = 1 mod 𝑁 (82)

and

𝑥 ≠ ±1 mod 𝑁, (83)

we can factor 𝑁 .

Proof. By our assumption, we have that

𝑥2 − 1 = 𝑘𝑁 (84)

⇒ (𝑥 + 1)(𝑥 − 1) = 𝑘𝑁. (85)

Furthermore by our second assumption that 𝑥 ≠ ±1 mod 𝑁 , neither 𝑥 − 1 nor 𝑥 + 1 is a

multiple of 𝑁 . The product is some multiple of 𝑁 , so what we conclude is that each of

(𝑥−1) and (𝑥+1) have some of 𝑁 ’s prime factors. To find one of these, we simply compute

gcd(𝑥 + 1, 𝑁) (86)

gcd(𝑥 − 1, 𝑁). (87)

□

Example 2.7. Let 𝑁 = 15. A number that satisfies the first condition is 𝑥 = 11:

11
2 = 121 = 1 mod 15. (88)

We can also easily verify that 11 ≠ ±1 mod 15. Now we compute the gcd of the pair of

integers around 11 with 15 to recover the factors:

gcd(12, 15) = 3 (89)

gcd(10, 15) = 5. (90)

We have successfully recovered the factors 3 and 5.

Note that for an application like RSA, the number 𝑁 we are trying to factor will always

be a composite of two primes, meaning that the gcd will be sufficient for finding these

numbers.

Question 50. Find a non-trivial square root of 1 mod 20.

39

Quantum Computation 2.5 Shor’s Algorithm

2.5 Shor’s Algorithm

We now have all the required pieces to see the full algorithm for factoring by Peter Shor.

Algorithm 3 Factoring

1: Pick 𝑥 at random from {2, . . . , 𝑁 − 1}
2: if gcd(𝑥, 𝑁) ≠ 1 then
3: gcd(𝑥, 𝑁) is a non-trivial factor of 𝑁 so we are done!

4: else
5: Use quantum Period Finding algorithm (alg 2) to find smallest 𝑠 such that 𝑥𝑠 = 1

mod 𝑁 .

6: Call this variable 𝑟.

7: if 𝑟 is odd then
8: Start over..

9: else if 𝑥𝑟/2 = ±1 mod 𝑁 then
10: Start over..

11: else
12: 𝑥𝑟/2

mod 𝑁 is a non-trivial square root of 1 mod 𝑁 (gcd(𝑥𝑟/2 − 1, 𝑁).

13: end if
14: end if

How likely is it that our algorithm actually finishes? For any 𝑁 that is not a power of a

prime, if 𝑥 is chosen at random from Z∗
𝑁

and 𝑟 is the smallest 𝑠 such that 𝑥𝑠 = 1 mod 𝑁 ,

then with probability ≥ 3/8,

• 𝑟 is even, and

• 𝑥𝑟/2 ≠ ±1 mod 𝑁 .

40

Quantum Computation Computation 3: Quantum Search - Grover’s Algorithm

※ Computation 3: Quantum Search - Grover’s Algorithm

Learning Outcomes
Upon following these notes and the corresponding lecture, students will be able to

• model NP complete problems as search problems.

• describe how to translate this search problem into the query model.

• describe geometrically how a quantum algorithm can accomplish search in

𝑂(2𝑛/2) queries.

• construct circuits to implement Grover’s algorithm.

• describe the implications of generalizing the search problem for Grover’s algo-

rithm.

3.1 The Search Problem

Once Shor’s algorithm was discovered, many researchers became very interested in the

potential of quantum computers to solve problems that are believed to be hard for classical

computers to solved. Formally, the question being asked was the following: “Can quantum

computers solve NP-complete problems?”

Example 3.1. 3-SAT

• Input: A Boolean formula𝜙 in 3-CNF form consisting of 𝑛-Boolean variables: 𝜙(𝑥1, 𝑥2, . . . , 𝑥𝑛).

3-CNF: (𝑥2 ∨ 𝑥7 ∨ 𝑥3) ∧ (𝑥5 ∨ 𝑥7 ∨ 𝑥9) ∧ · · · (91)

• Output: Does 𝜙 have a satisfying assignment? That is, is there a way of setting each 𝑥𝑖

such that 𝜙 evaluates to TRUE?

I can "prove" to you that there is a satisfying assignment by giving you an assignment

of the variables 𝑥1, . . . , 𝑥𝑛 , which you just need to plug into the function and check for

yourself.

The above example is important because not only is it in NP, it is actually a problem in

a subset of NP problems called NP-complete. NP-complete problems are often referred to

as "the hardest problems in NP", and is a significantly important set of problems because

we know that an efficient solution to any NP-complete problem would mean there is an

41

Quantum Computation 3.1 The Search Problem

efficient solution to every problem in NP! It is generally believed that it is impossible to

solve NP-complete problems in polynomial time using a classical computer.

The final algorithm we study this class is again a query based algorithm. Per usual,

we will have black-box access to the function 𝑓 : {0, 1}𝑛 → {0, 1} we are interested in in

the form of a unitary 𝑈 𝑓 :

𝑈 𝑓 |𝑥⟩ |𝑦⟩ = |𝑥⟩ |𝑦 ⊕ 𝑓 (𝑥)⟩ . (92)

We are interested in deciding some property of the function. For this last setting, we are

interested in the search problem:

Definition 3.2 (Search Problem). Let 𝑓 : {0, 1}𝑛 → {0, 1}. Is there an 𝑛 bit string 𝑥 such

that 𝑓 (𝑥) = 1?

This problem is interesting because any decision problem (including NP-complete

ones) can be formulated in this way. For example, if we have a 3-SAT instance we can set

𝑓 (𝑥1 · · · 𝑥𝑛) = 𝜙(𝑥1, · · · , 𝑥𝑛). To simplify the analysis, we will first assume that 𝑓 either

has a unique solution or no solution at all. In other words,

|{𝑥 | 𝑓 (𝑥) = 1}| = 0 or 1. (93)

In the case that a solution does exist, we will denote it by the variable 𝑎.

Question 51. What is the classical query complexity for the above problem?

You may be wondering if this is too general for analyzing NP-complete problems, but

there is a widely believed hypothesis that a brute force search is the best we can do for

3SAT. In other words, we believe that the lower bound shown above for general 𝑓 holds

for functions that are NP-complete too. We now want to ask what kind of speed-up is

possible if we use a quantum computer in this setting.

42

Quantum Computation 3.2 Grover’s Algorithm

3.2 Grover’s Algorithm

Let |𝑎⟩ be the standard basis state representing the value such that 𝑓 (𝑎) = 1. We will also

use the notation

|𝜓⟩ :=
1√
𝑁

∑
𝑥∈{0,1}𝑛

|𝑥⟩ (94)

to represent the uniform superposition state.

One key fact about this algorithm is that the state of our system will always stay in the

space spanned by |𝑎⟩ and |𝜓⟩.

Question 52. Letting |𝑣⟩ be the state of our system at any given time step, how can we

express the above fact mathematically?

Note that |𝑎⟩ and |𝜓⟩ are not orthogonal.

Question 53. What is the overlap between |𝑎⟩ and |𝜓⟩? Express this using trigonometric

functions. Draw the two vectors, with |𝑎⟩ as a vector pointing upward, and |𝜓⟩ in the

right direction. What does this say about the probability of measuring |𝑎⟩?

We can create an orthonormal basis that represents the same subspace by subtracting

the |𝑎⟩ component from |𝜓⟩.

Question 54. Create a new state |𝑒⟩ that is orthonormal to |𝑎⟩ by subtracting the |𝑎⟩
component from |𝜓⟩.

43

Quantum Computation 3.2 Grover’s Algorithm

The last preparation step we need is to express the angle between |𝑒⟩ and |𝜓⟩. For very

small values of 𝜃, it is known that

sin𝜃 ≈ 𝜃. (95)

From this, we can conclude that the angle formed between |𝜓⟩ and |𝑒⟩ is approximately 𝜃.

The main steps of the algorithm can be described purely geometrically. We will discuss

how to implement these steps later, but for now let’s build the intuition behind what the

algorithm is doing. I will use |𝑣⟩ to represent the current state of the system. Here are the

steps that we repeat:

1. Reflect |𝑣⟩ over the |𝑒⟩ axis.

2. Reflect |𝑣⟩ over |𝜓⟩.

Question 55. Let 𝜃 be the angle between |𝑣⟩ and |𝑒⟩ before applying the two steps above.

What is the angle between the two after we apply the two steps?

Question 56. What angle between |𝑣⟩ and |𝑒⟩ would give us the highest probability to

measure |𝑎⟩?

44

Quantum Computation 3.2 Grover’s Algorithm

3.2.1 Implementing Reflections

How can we implement the reflections? Before discussing that, let’s think about how to

express the action of these reflections mathematically. Suppose we have a state |𝑣⟩ that

we want to reflect over some other state |𝜙⟩.

Question 57. Write down |𝑣⟩ as a superposition of |𝜙⟩ and |𝜙⊥⟩. Write down the state

|𝑣′⟩ after the reflection is completed.

3.2.2 Reflection over |𝑒⟩

The first reflection we need to do is over the |𝑒⟩ axis. That is, we want

|𝑣⟩ = 𝛼 |𝑒⟩ + 𝛽 |𝑎⟩ (96)

|𝑣′⟩ = 𝛼 |𝑒⟩ − 𝛽 |𝑎⟩ (97)

(98)

In words, we want to multiply the |𝑎⟩ state by -1, and the rest of the states by +1. Remember

that 𝑎 is the unique bitstring satisfying 𝑓 (𝑎) = 1. We can summarize this action by

|𝑣⟩ =
∑
𝑥

𝛼𝑥 |𝑥⟩ −→ |𝑣′⟩ =
∑
𝑥

𝛼𝑥(−1) 𝑓 (𝑥) |𝑥⟩ . (99)

Question 58. We know we can perform the above operation with access to 𝑈 𝑓 . 𝑈 𝑓 acts on

𝑛 + 1 qubits. What state does this qubit need to be in for us to apply the phase of (−1) 𝑓 (𝑥)?

45

Quantum Computation 3.2 Grover’s Algorithm

3.2.3 Reflection over |𝜓⟩

The mapping we want to perform here is

|𝑣⟩ = 𝛼 |𝜓⟩ + 𝛽 |𝜓⊥⟩ (100)

|𝑣′⟩ = 𝛼 |𝜓⟩ − 𝛽 |𝜓⊥⟩ (101)

(102)

where |𝜓⟩ = 1√
𝑁

∑
𝑥 |𝑥⟩.

Since |𝜓⟩ is generated by applying 𝑛 Hadamard gates, the following is true:

𝐻⊗𝑛 |0 · · · 0⟩ = |𝜓⟩ ⇐⇒ |0 · · · 0⟩ = 𝐻⊗𝑛 |𝜓⟩ . (103)

If we apply 𝑛 Hadamard gates to |𝜓⊥⟩, we get a state |𝜙⟩ which is a uniform superpo-

sition over all states perpendicular to |0 · · · 0⟩. The goal is to now apply a phase of -1 to

every standard basis state which is not equal to |0 · · · 0⟩. I claim that the following 3 qubit

circuit accomplishes this:

|𝑥1⟩

|𝑥2⟩

|𝑥3⟩

|−⟩

𝑋 𝑋

𝑋 𝑋

𝑋 𝑋

1 2 3

If input state is |000⟩:

If input state is not |000⟩:

46

Quantum Computation 3.3 Generalized Search

3.3 Generalized Search

What about the (more likely) case where there are multiple solutions? That is,

|{𝑥 | 𝑓 (𝑥) = 1}| = 𝑀 > 1. (104)

Assume (for now) that the number of solutions 𝑀 is known. We would like to find any

one of these solutions. We again define two orthogonal states, the uniform superpositions

of the solution states and non-solution states respectively:

|𝜙1⟩ =
1√
𝑀

∑
𝑥: 𝑓 (𝑥)=1

|𝑥⟩ |𝜙0⟩ =
1√

𝑁 − 𝑀

∑
𝑥: 𝑓 (𝑥)=0

|𝑥⟩ . (105)

Then our starting uniform superposition state can be expressed as a weighted sum of the

above two states as

|𝜓⟩ =
√

𝑁 − 𝑀

𝑁
|𝜙0⟩ +

√
𝑀

𝑁
|𝜙1⟩ . (106)

Since we know 𝑀, we can select the number of iterations 𝑐 such that

(2𝑐 + 1)𝜃 ≈ 𝜋
2

(107)

in the same way we did in the previous section. In the case where 𝑀 << 𝑁 , 𝜃 ≈
√

𝑀
𝑁 , so

the total number of iterations required is 𝑂

(√
𝑀
𝑁

)
.

Note: Since each iteration of Grover’s algorithm advances the current state by 2𝜃, we

can only guarantee that the final state is within 𝜃 of |𝜙1⟩.
In the next section, we will look at an algorithm which will let us handle the case where

𝑀 is unknown.

Before that though, we must resolve the question we started the section with. From

the results in this section, Grover’s algorithm does not provide us with an exponential

speed-up over classical algorithms for search problems in the query model. Is there a

quantum algorithm which can outperform Grover? It turns out this is not possible, and

Grover’s algorithm is "the best you can do" in this query model. There is a lower bound

47

Quantum Computation 3.4 Amplitude Estimation

(which we will not prove here) that states that even if you are guaranteed that the |𝑠 𝑓 | (the

number of satisfying solutions) is 0 or 1, there is not much we can do to improve.

More formally, the lower bound states that any quantum circuit that can determine

between |𝑠 𝑓 | = 0 and |𝑠 𝑓 | = 1 with high probability will require Ω

(√
𝑁

)
queries to 𝑈 𝑓 .

3.4 Amplitude Estimation

In the previous section, we mentioned that if we want to find an 𝑥 such that 𝑓 (𝑥) = 1,

we need to have an approximate idea of what 𝑀 is. There is a standard method for

accomplish this that uses the QFT, but instead of discussing that I will outline a result

that was published by myself and Sandy, along with two (then) undergrads who took this

class two years ago.

Our algorithm is iterative, meaning that it jumps between a parameterized quantum

portion and a classical postprocessing portion. Let 𝑎 be the solutions, and 𝜃𝑎 be the angle

formed between the starting state |𝜓⟩ and the superposition |𝜙0⟩ over states that evaluate

to 0. The two are related by the expression

𝑎 = sin𝜃𝑎 . (108)

If we know 𝑎, we know how many queries to make in the generalized search algorithm.

The algorithm will output an estimate for 𝜃𝑎 . We do this by maintaining lower and

upperbounds for what 𝜃𝑎 is.

Picture of how the algorithm works:

48

	Computation 1: Query-based algorithms
	Query Complexity
	Deutsch's Algorithm
	Deutsch-Josza Algorithm
	Bernstein-Vazirani
	Simon's Algorithm
	Query Based Algorithm Wrap Up

	Computation 2: Quantum Fourier Transform and Shor's Algorithm
	Quantum Fourier Transform
	Properties of the Fourier Transform
	The Fourier transform converts between translation and phase
	Fourier Transform of Factors
	Periodic Superpositions with a Shift

	Period Finding
	RSA and Number Theory
	Shor's Algorithm

	Computation 3: Quantum Search - Grover's Algorithm
	The Search Problem
	Grover's Algorithm
	Implementing Reflections
	Reflection over |e
	Reflection over |

	Generalized Search
	Amplitude Estimation

