
Homework 5 Problem 1: 𝑛-qubit Hadamard

CS166 WI24: Homework 5 (Due Friday March 1 11:59pm)

※ Problem 1: 𝑛-qubit Hadamard

In lecture, we encountered the following identity for the 𝑛-qubit Hadamard.

Proposition 1.1 (𝑛-qubit Hadamard). Let 𝑥 = 𝑥1𝑥2 · · · 𝑥𝑛 be the binary expansion of 𝑥. In
other words, 𝑥𝑖 is the 𝑖-th bit of 𝑥 when 𝑥 is written in binary. Then, we have the following
identity:

𝐻⊗𝑛 |𝑥⟩ = 𝐻 |𝑥1⟩ ⊗ 𝐻 |𝑥2⟩ ⊗ · · · ⊗ 𝐻 |𝑥𝑛⟩ (1)

=
(|0⟩ + (−1)𝑥1 |1⟩)√

2
⊗ · · · ⊗ (|0⟩ + (−1)𝑥𝑛 |1⟩)√

2
(2)

=
1√
2𝑛

∑
𝑦∈{0,1}𝑛

(−1)𝑥·𝑦 |𝑦⟩ (3)

where 𝑥 · 𝑦 is the bit wise dot product of 𝑥 and 𝑦 (i.e., 𝑥 · 𝑦 = 𝑥1𝑦1 + · · · + 𝑥𝑛𝑦𝑛).

1. Consider the case where 𝑛 = 3, and 𝑥 = 101.

(a) Write down equations (1), and (2) for this case explicitly.

(b) Distribute the tensor product you have from equation (2) and verify that each
coefficient matches equation (3).

2. Consider the case where 𝑛 = 4, and 𝑥 = 0000.

(a) What is equation (2) in this instance?

(b) What is the probability that we measure 0010 if we measure the four qubits in
the standard basis?

(c) More generally, what can we say about the distribution of outputs when we
measure this state in the standard basis?

3. Prove the proposition.

1

Homework 5 Problem 2: Deutsch-Josza Explicit Example

※ Problem 2: Deutsch-Josza Explicit Example

|0⟩

|0⟩

|−⟩ |−⟩

𝐻

𝑈 𝑓

𝐻

𝐻 𝐻

Let 𝑓 be a function that takes 2 bits as inputs and outputs a single bit. The function
takes the two bits it received, adds them all together, and outputs the answer mod 2.

1. Is this function constant or balanced?

2. (Particular instance) What is 𝑈 𝑓 |11⟩ |−⟩?

3. Now we begin analyzing the full algorithm. Starting from |00⟩ |−⟩ as we have in
the diagram, what is the state of the algorithm after the 𝐻 gates? Use the 𝑛-qubit
Hadamard identity.

4. (Continue from 3) What is the state of the algorithm after the 𝑈 𝑓 gate is applied?

5. (Continue from 4) What is the state of the algorithm after the second layer of 𝐻

gates? Don’t use summation notation, and explicitly write out the coefficients.

6. (Continue from 5) What are the possible measurement results and their correspond-
ing probabilities?

2

Homework 5 Problem 3: Simon’s problem example

※ Problem 3: Simon’s problem example

The function 𝑓 : {0, 1}3 → {0, 1}3 is defined as follows:

𝑓 (000) = 110 𝑓 (100) = 001 (4)
𝑓 (001) = 001 𝑓 (101) = 110 (5)
𝑓 (010) = 000 𝑓 (110) = 010 (6)
𝑓 (011) = 010 𝑓 (111) = 000 (7)

(8)

1. The inputs are paired so that for 𝑥 ≠ 𝑦, 𝑓 (𝑥) = 𝑓 (𝑦) if and only if 𝑥 = 𝑦 ⊕ 𝑠 for some
fixed 𝑠. Can you figure out 𝑠 by inspection?

2. In this question, you will simulate Simon’s algorithm for the function 𝑓 . The unitary
operator 𝑈 𝑓 maps |𝑥⟩ |000⟩ to |𝑥⟩ |000 ⊕ 𝑓 (𝑥)⟩, where 𝑥 is a 3-bit string. The operator
⊕ is bit-wise addition, mod 2. Write down the state of the algorithm after each step.
Use the 𝑛-qubit Hadamard identity.

• Start with |000⟩ |000⟩.

• Apply 𝐻⊗3 ⊗ 𝐼⊗3.

• Apply 𝑈 𝑓 .

3. Based on your answer from the previous problem, what are the possible states we can
see if we measure the last three qubits? What are the corresponding probabilities?

4. Suppose you measured 110 in the previous step. What is the state of the algorithm?

5. (Continue from 4) Apply 𝐻⊗3 on the first three qubits. What are the possible
measurement outcomes? Use the 𝑛-qubit Hadamard identity.

6. (Continue from 5) Verify that every string 𝑥 that is a possible outcome of the last
measurement satisfies 𝑥 · 𝑠 = 0 mod 2.

3

Homework 5 Problem 4: Simon’s problem implementation

※ Problem 4: Simon’s problem implementation

import numpy as np

f = {
’ 000 ’ : ’ 110 ’ ,
’ 001 ’ : ’ 001 ’ ,
’ 010 ’ : ’ 000 ’ ,
’ 011 ’ : ’ 010 ’ ,
’ 100 ’ : ’ 001 ’ ,
’ 101 ’ : ’ 110 ’ ,
’ 110 ’ : ’ 010 ’ ,
’ 111 ’ : ’ 000 ’

}

N = 2 ** 6

U_f = np . i d e n t i t y (N, dtype=complex)

for input_s ta te , output_s ta te in f . i tems () :
input_index = in t (i npu t_ s t a t e [: : − 1] , 2) + in t (’ 000 ’ , 2) * 2**3
output_index = in t (

i npu t_ s t a t e [: : − 1] , 2) + in t (output_s ta te [: : − 1] , 2
) * 2**3

U_f [[input_index , output_index]] = U_f [[output_index , input_index]]

Copy and paste the above code snippet into your environment. You can apply a 𝑈 𝑓

gate by the code

qc . uni tary (U_f , range (6) , l a b e l = ’Uf ’)

Implement the algorithm you analyzed in Problem 3. Can you recover the secret string
using your code?

4

	Problem 1: n-qubit Hadamard
	Problem 2: Deutsch-Josza Explicit Example
	Problem 3: Simon's problem example
	Problem 4: Simon's problem implementation

