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"[Quantum mechanics] delivers much but it hardly brings us closer to the Old One’s secret. In
any event, I am convinced that He is not playing dice.”

- Albert Einstein

Classical physics allow us to predict the exact trajectories and outcomes of physical
systems, given that we know enough information in the beginning. We model coin flips
as being events that have a 0.5 probability of landing in heads or tails, but in principle,
if we had enough precise control over our coinflip setup, we could predict exactly where
the coin would land.

Quantum physics however, does not seem to have this property. As we discussed
before, if Alice and Bob share a qubit from a Bell pair, no matter how far away they are,
Alice’s measurement result seems to affect what Bob’s measurement result is!

Question 20. Why is it problematic that Alice’s measurement result affects Bob measure-
ment result no matter how far they are separated?

To reconcile this conflict, scientists hypothesized that particles had "hidden variables"
representing the possible outcomes they would be in if they were measured. One computer
scientist type hidden variable theory might hypothesize the following: When Alice and
Bob’s qubits first get entangled, they decide what their measurement result will be across
all possible bases. If they are too far apart to communicate fast enough, they will just
consult the local list to decide what state to collapse to.

John Bell and others designed an experiment which ruled out most known hidden
variable theories, including the one we mentioned above. Here, ruling out means that
the experiment behaves in a way which would contradict the assumption that a hidden
variable theory exists. Instead of looking at the experiment, we will study a game that
isolates the critical parts.
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8.1 The CHSH Game

Here are the rules of the game:

Alice and Bob will be separated with no way to communicate with each other.

Charlie will flip two coins, and send a bit to Alice and Bob depending on the outcomes.
Let’s say he sends a 0 if tails, and a 1 if heads.

After receiving the random bit x, Alice sends back an answer bit a to Charlie.
After receiving the random bit y, Bob sends back an answer bit b to Charlie.

Alice and Bob win against Charlie if the answer bits and random bits satisfy

a+b (mod?2)=xy. 9)

Question 21. If Charlie flipped heads for Alice’s bit, and tails for Bob’s bit, what is a choice
for Alice and Bob’s response for them to win?

Question 22. If Charlie flipped heads for both coins, what is a choice for Alice and Bob’s
response for them to win?

x |y | xy | Win condition
00| 0
0|1} 0
110]0
171]1

Alice and Bob can discuss a strategy and share as many bits of information as they

would like with each other, but they are not allowed to communicate once the game

begins.
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Question 23. If Alice and Bob decide to use the strategy that they always output a = 0 and
b = 0, what is the probability that they win?

We won't prove it here, but the above winrate is the best classical strategy for Alice
and Bob. A hidden variable theory is trying to explain quantum mechanics in a classical
way, so if qubits do store hidden variables, there should be no way to consistently beat the
CHSH game with a probability higher than we calculated above.

For the remainder of the chapter, we will use the following shorthand to describe a

state with real amplitudes:
|6) := cos O |0) +sin O |1) (10)

Question 24. Draw the two bases {|nt/8),|57/8)} and {|-m=/8),|37/8)} in the |0), |1)
plane.

Question 25. Suppose the state |+) is measured in the {|7/8), |57/8)} basis. What is the
probability of each outcome? Express your answer as a function of cos 0 and sin 0.
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Alice and Bob decide on the following strategy.

Alice Bob

If x = 0, measure in {|0), |1)} basis. If y = 0, measure in {|-7/8) , |37t/8) } basis.

If x = 1, measure in {|+) , |—)} basis. If y =1, measure in {|7t/8) , |57/8)} basis.

If the outcome is |0) or |—), output a = 0. | If the outcome is |71/8) or |-n/8), output b = 0.

If the outcome is |1) or |[+), output a = 1. | If the outcome is |37t/8) or |57/8), output b = 1.

The following figure draws the bases that Alice and Bob will measure in depending

on the results of the random bits.
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Question 26. What is the probability that Alice and Bob win against Charlie if both of the
random bits they receive are 0?

Again, we won't show it here but the win probability that we get for the strategy
stated above is optimal when allowing quantum entanglement. Since this strategy beats
the bound that any classical strategy can achieve, we can rule out the hidden variable
theory that we stated above (and most other ones!). Many other "non-local" games have
been designed where two party quantum strategies using entangled bits outperform any
classical strategies.

The CHSH game can be (and has been) tested experimentally. The probability of
success can estimated by repeating the experiment many times, and if the probability is
over 75%, this is bad news for the Hidden Variable Theory supporters!

Maybe there is still a loophole in the CHSH game that explains why it violates the
Hidden variable theories. One possible loophole that could be considered is what people
called "the Locality Loophole".

The designers of this loophole suggested that maybe the entangled qubits send each
other some signal after one is measured to inform the other qubit what the collapsed state
is.

Question 27. How can we rule out the locality loophole?
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"Einstein, stop telling God what to do.”
- Neils Bohr

Initially, the Bell inequality was taught because it was conceptually important. The
CHSH game was only useful as a thought experiment, not something with real applica-
tions. However, researchers have come up with some applications for the CHSH game.

Generating truly random numbers is an important task in computing, especially for
cryptography. Classically, we rely on pseudorandom number generators, which only
mimic randomness up to some level of undetectability.

Quantum computers could be useful for generating random numbers.

Question 28. Design a single qubit circuit that outputs a random bit.

However, how can we be sure that the hardware we are using is working correctly and
hasn’t been tampered by some adversary? We would like some way to certify that we
have a truly random system.

¢ Create two boxes that share a pair of entangled qubits.
* The boxes could be faulty or even maliciously designed.

¢ Play the CHSH game with these two boxes. If they win > 75% of the time, we know
that there is some level of randomness in the responses.

¢ We know of ways to extract small bits of randomness to get longer uniformly random
strings.

¢ Playing the game with x = y = 0 most of the time with an occasional "curveball" is
sufficient to analyze the randomness.

Similar techniques have been applied to design a strategy using the CHSH game to
detect whether or not a computation was performed on a quantum computer or not.

In homework, we will explore some other non-local games and hidden variable theo-
ries.
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