
Quantum Information Complexity and Circuits

※ Complexity and Circuits

"Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make
it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy."

- Richard P. Feynman

9.1 Classical Circuits and Complexity

Consider a classical function 5 that takes = input bits and returns < output bits. The
signature of this function would be

5 : {0, 1}= ! {0, 1}< . (11)

You may have learned that a universal gate set can be used to compute any Boolean
function in theory.

Question 29. What are some universal gate sets for classical circuits?

Question 30. The following set is NOT universal: {$',�#⇡}. Can you explain why?

In complexity theory, we are primary interested in what are called decision problems,
where there is always just a single output bit. We can express the signature of decision
problems as

5 : {0, 1}⇤ ! {0, 1}. (12)

A decision problem can also be defined as a language !, which just means some subset of
binary strings.

! ✓ {0, 1}⇤ 5 (G) = 1 $ G 2 !. (13)

Question 31. A natural computational problem is searching for the minimum value of a
list. How could we capture this problem as a decision problem?

Let’s look at some classical complexity classes to get a sense of how to classify functions.

18

{ NAND3
,
{NOR 3

,
{ XOR 3

,

EAND, NOr 3 , { OR ,NO }

Caunot compute NOT
ー

s ls element o the uirimmcn ? O(a)

→ 1 s there a number ≤ t ? ffilf
→ Does This sabctcontammininam ?

Quantum Information 9.1 Classical Circuits and Complexity

Definition 9.1 (P (Deterministic Polynomial Time)). A language ! ✓ {0, 1}⇤ is in P if there
exists a turing machine M and a fixed polynomial A! : N ! R+, such that for any input
G 2 {0, 1}= , " halts in at most $(A!(=)) steps, and:

• (Completeness/YES case) If G 2 !, " accepts.

• (Soundness/NO case) If G 8 !, " rejects.

Definition 9.2 (NP (Non-Deterministic Polynomial Time)). A language ! ✓ {0, 1}⇤ is in
NP if there exists a turing machine M and fixed polynomials ?! , A! : N ! R+, such that
for any input G 2 {0, 1}= , " takes in a "proof" H 2 {0, 1}?!(=), halts in at most $(A!(=))
steps, and:

• (Completeness/YES case) If G 2 !, then there exists a proof H 2 {0, 1}?!(=) causing "

to accept.

• (Soundness/NO case) If G 8 !, then for all proofs H 2 {0, 1}?!(=), " rejects.

Question 32. Consider the decision problem MULTIPLY: Given as input G , H 2 Z and a
threshold C, is the product G , H C?

The reverse problem is FACTOR: Given I 2 Z+ and threshold C, does I have a nontrivial
factor G C?

What class does MULTIPLY belong to? What about FACTOR? Why?

Question 33. Let ! be the set of bit strings that describes a graph. What class does this
language belong to? Why?

19

Quantum Information 9.1 Classical Circuits and Complexity

One question we may want to ask is if it is possible for every possible Boolean function

5 : {0, 1}= ! {0, 1} (14)

is computable using a circuit of size poly(=). Claude Shannon showed in 1949 that the
answer is no, and in fact, most functions with = input variables require about 2=/= gates
when using a combination of AND, OR, and NOT gates.

Question 34. How many different Boolean functions 5 that take = inputs are there?

A key difference between classical and quantum computing is that the outputs of
quantum algorithms are probabilistic. To handle this, quantum complexity classes need
to have some room for error. To prepare for this, let’s look at the probabilistic version of
%.

Classically, we simulate randomness by allowing the circuit to take random bits as
input. That is, the randomness is in the inputs, not in the implementation of the circuit.
On the other hand, the randomness of a quantum circuit is in the final measurement
process.

Definition 9.3 (BPP (Bounded-Error Probabilistic Polynomial Time)). A language ! ✓
{0, 1}⇤ is in BPP if there exists a turing machine M and fixed polynomials B! , A! : N! R+,
such that for any input G 2 {0, 1}= , " takes in a "proof" H 2 {0, 1}B!(=), halts in at most
$(A!(=)) steps, and:

• (Completeness/YES case) If G 2 !, then for at least 2/3 of the choices of H 2 {0, 1}B!(=),
" accepts.

• (Soundness/NO case) If G 8 !, then for at most 1/3 of the choices of H 2 {0, 1}B!(=), "
accepts.

Question 35. How does the definition of BPP differ from that of NP?

20

Quantum Information 9.2 Quantum Circuits

Question 36. We’ve picked some constants 2/3 and 1/3 for the completeness and sound-
ness conditions. Suppose we have three copies of the turing machine ", and run the
machine three times on the same input. We say that we accept if the majority of turing
machines accept. What is the probability that we accept a string G 2 !? What about a
string G 8 !?

9.2 Quantum Circuits

Let’s first take a moment to study the computational model of quantum circuits. Since any
function computed by a quantum circuit has to be unitary, we will always have circuits
that have the same number of input and output qubits.

We define a quantum circuit as a sequence of primitive gates, each of which acts on a
small (usually 1-3) number of qubits. We’ve seen some diagrams already that look like
the following.

|0i
*1 *5

|0i
*3

|0i
*4

|0i
*2

|0i

Here, each of the 2 qubit gates are actually unitaries acting on all = qubits, but we saw
that the tensor product notation helps abstract this away. For example, the third layer as
a matrix is

�1 ⌦*3 ⌦ �4 ⌦ �5 (15)

Here we will explore some questions that arise when discussing quantum circuits.

• Is it possible that quantum computers can solve any computational problem?

No. A classical computer can always simulate an =-qubit circuit by explicitly storing
the state as a 2=-length vector, and performing matrix multiplication with the unitaries to
update the state after each gate.

21

Quantum Information 9.2 Quantum Circuits

Since there are problems that classical computers cannot solve, a quantum computer
is not able to compute any computational problem. The best we can hope for is an
exponential improvement over classical computers in space and time.

• Why does each gate act on only a few qubits?

Similar to classical computing, when physically implementing these circuits, we often
rely on small local interactions which are combined in clever ways by algorithms designers
(you!) to do something interesting or useful. Thus it is natural for our computational
model to have similar restrictions. We will see that this is not an issue in a similar way
that it isn’t in classical computing.

• What is the role of interference in quantum computing?

This is the most important feature of quantum circuits! An ideal quantum algorithm
will elaborately plan the interference so that

• Amplitudes of incorrect answers cancel out and become small (destructive interference)

• Amplitudes of correct answers overlap and become large (constructive interference)

• What is the role of entanglement in quantum computing?

We don’t usually talk about intentionally creating entanglement but it has to be there
if we’re doing anything interesting. Suppose we have a product state |)i on =-qubits:

|)i := |)1i ⌦ |)2i ⌦ · · · ⌦ |)=i (16)

Question 37. How many distinct amplitudes have to be stored in order to completely
describe |)i?

The consequence of the above exercise is that any algorithm that only works with
product states and never entangles any qubits will never need more than a linear number
of amplitudes. This makes it completely feasible to simulate such an algorithm on a
classical computer, meaning we wouldn’t need a quantum computer. Entanglement blows
up this number of amplitudes, making it very difficult to simulate classically.

22

Quantum Information 9.2 Quantum Circuits

• Is the restriction to local gates significant?

We previously discussed that our computational model will be restricted to just using
local gates. Will this lead to us not being able to solve certain problems? It turns out that
this is not the case, and nature justifies our usage of local gates.

It can be proven that any unitary * (2= ⇥ 2= matrix) on = qubits can be decomposed as
a product of 1-qubit and 2-qubit gates:

* = *1*2 · · ·*8 · · ·*= . (17)

Furthermore, this decomposition is exact! The problem is, however, that most decomposi-
tions will need an order of 4= 1- and 2-qubit gates to synthesize. This can be shown in a
similar way to Shannon’s counting argument.

As algorithm designers, we are mostly interested in efficient quantum circuits, which
as computer scientists means the number of gates required grows polynomially with the
input. The hope is that among these efficient circuits, there are interesting classes that
allow us to solve problems faster than any classical algorithm could.

Another thing to note, is that the small gates we listed above are arbitrary 1- or 2-qubit
gates. If we restricted to a finite set of gate types (H, CNOT, Z, etc.), would we be able to
say the same thing? This leads us to another question we have alluded to earlier during
the discussion of classical circuits.

• Is there a universal gate set for quantum circuits?

We need to formalize what exactly we mean when asking this question. Remember,
unitaries are continuous in nature. If the question were asking whether there exists a
finite set of gates that can be combined to compute any unitary on = qubits, the answer
would be no. A finite set of gates could never capture the full continuous space.

What if we allowed for a little bit of error? Since the measurement process is prob-
abilistic anyways, it seems quite reasonable to achieve approximate synthesis of unitaries
without affecting the measurement statistics too much.

When thinking about designing a universal quantum gate set, we need to keep in mind
the critical features of quantum computing that we need to support.

1. Must be able to create interference/superpositions.

2. Must be able to create entanglement.

3. Must be able to create states with imaginary amplitudes.

23

Quantum Information 9.2 Quantum Circuits

An important example of creating superpositions is the H gate. However, since it only
acts on a single qubit, it isn’t able to create entanglement. An entangled state we’ve seen
already is the bell pair, and we were able to create that by combining the H gate and the
CNOT gate. Now we only need a gate to satisfy the third point.

We could use something like the P gate, whose action can be described using the matrix

% =

"
1 0
0 8

#
. (18)

These gates seem to do what we wanted in terms of the three requirements, but they still
do not form a universal set, as they only cover a discrete subset of all unitary operations.
Furthermore, in a surprising result, it was shown that any circuit that starts in |0 · · · 0i and
uses only these gates can be simulated efficiently using a classical computer!

Let

' :=

"
cos � sin

sin cos

#
. (19)

Replacing the Hadamard gate with '�/8 makes the aforementioned set a universal gate
set, where universal means that it can approximate any unitary we want.

There are also other universal gate sets, a popular example being {Toffoli,� , %}. De-
pending on the hardware, some gates are easier to implement than others, so you may
choose a different universal gate set based on what you have available. A fascinating result
by Yaoyun Shi (https://arxiv.org/abs/quant-ph/0205115) states that CNOT and Toffoli
gates do almost all of the heavy lifting towards making a gate set universal.

9.2.1 Approximating Unitaries and Quantum Universal Gate Sets

Now that we have some candidates, let’s try to be more precise about what we mean when
we say we can approximate a unitary * using another unitary *

0. Intuitively, we would
want to conclude that two matrices are similar if something like the following holds: "For
every input, the outputs from* and*

0 are close." The mathematical tool we will be using
to reason about this is the operator norm.

Definition 9.4 (Operator Norm). Let * be an = ⇥ = matrix and {|)i} be the set of unit
vectors of size =. Then, the operator norm of * is defined as

| |* | | := max
|)i

��
* |)i

��
. (20)

We can use the norm to define a distance between two unitaries. We will say that *0

approximates * if
| |* �*

0| | &. (21)

24

Quantum Information 9.2 Quantum Circuits

By the definition, this is equivalent to saying

| |* �*
0| | := max

|)i
|* |)i �*

0 |)i | &. (22)

We can now formally define what a universal quantum gate set is.

Definition 9.5 (Universal Gate Set). A gate set ⌧ is universal if for every

• =,

• unitary * on = qubits,

• & > 0,

there exists a sequence of gates 61, . . . 6; such that each 68 2 ⌧ and

| |* �*61*62 · · ·*6;
| | & (23)

As you might expect, the more precise we want the approximation to be (small &), the
larger ; will become. Can we calculate what this overhead will be exactly?

One natural way to start doing this from what we already know is to first decompose
* into a product of (arbitrary) 1- and 2-qubit gates (which we know we can do):

* = *1*2 . . .*; (24)

Recall that ; could be as large as 4= here. We are not expecting most unitaries to be
approximate-able efficiently, so we won’t worry about this for now. Then we can try to
analyze how many gates from our universal gate set we will need to approximate each *8 .
The following is a landmark result in quantum computing, giving us a good idea of what
the overhead is.

Theorem 9.6 (Solovay-Kitaev Theorem). If the universal gate set ⌧ is

• closed under inverse, and
6 2 ⌧ , 6

�1 2 ⌧ (25)

• generates a dense subset for 2-qubit gates. (You can approximate any 2-qubit gate to
within & using gates from ⌧,

then only (log(1/&))2 gates are required to simulate any 2-qubit gate to within &.

25

Quantum Information 9.3 Quantum Complexity

9.3 Quantum Complexity

One critical difference between classical and quantum computing was seen through the
No Cloning Theorem. Since we can copy data in classical computing, we only have to
think about the input size, and make sure that the computation doesn’t use more than say,
polynomial space, throughout the process.

For analyzing quantum algorithms, we need to be explicit about the number of extra
qubits we will need for our "work space". We call these ancillary qubits, and our input is
appended with < ancillary qubits initialized to a known state, for example |0i.

One final thing to note, is that we are still going to be interested in decision problems.
To make this precise, we will require the algorithm to place the output bit on the first
wire. This is not a big issue, as we can add SWAP gates at the end of the circuit to place
the output bit on the first qubit.

|G1i

.

.

.

|G=i

|0i
.
.
.

|0i

Input

*

@(=) Ancilla bits

Question 38. The swap gate switches the state of two qubits. Show that it can be modeled
as three CNOT gates like below.

|#i

|)i

1 2 3

26

Quantum Information 9.3 Quantum Complexity

Now that we have a formal model for a quantum circuit, let’s see our first quantum
complexity class.

Definition 9.7 (BQP (Bounded-error quantum polynomial time)). A language ! is in BQP
if there exist polynomials ?(=) and @(=) and a family of circuits ⇠1, ⇠2, ⇠3 . . . such that the
following hold:

• (polynomial space) On an = bit input G, the circuit ⇠= takes |Gi |0i⌦@(=) as input.

• (fixed output location) Output is the measurement of the first qubit in the standard
basis.

• (polynomial size circuit) |⇠= | ?(=).

• (uniformity) There is a polynomial time Turing Machine that on input 1= outputs a
description of ⇠= .

• (completeness) If G 2 !,

Prob
h
⇠=(|Gi |0i⌦@(=)) = 1

i
� 2

3 (26)

• (soundness) If G 8 !,
Prob

h
⇠=(|Gi |0i⌦@(=)) = 1

i
 1

3 (27)

Note that the inputs and outputs are classical bits, making the problem inherently
classical. So for BQP, we are solving a classical problem using a quantum computer.

How do the classical classes P and BPP compare to BQP? From what we hear from the
news, we would expect that P, BPP ✓ BQP. That is, any function that can be computed
efficiently with a classical circuit can also be computed efficiently with a quantum circuit.

To prove this rigorously, we can just show that every classical family of P and BPP
circuits can be simulated using a quantum computer. However, to show this there are
some issues that must be resolved related to some of the weird properties of quantum
computing not seen in classical computers.

27

Quantum Information 9.3 Quantum Complexity

The first is No Cloning, since classical circuits often copy information around. This
turns out to not be an issue though, since we can still copy classical bits, which are just
pure standard basis states:

G G

0 G

The other problem is the reversibility of quantum circuits. For every quantum circuit,
there exists a reverse circuit that computes the inverse function. This means we need to
ensure that there is a reversible way to do classical computation, if we want to simulate it
on a quantum computer. Since we are using universal gate sets, that task is much simpler
as we just have to show that every gate in the gate set is reversible.

An important gate we will be using to show this is a three qubit gate called the Fredkin
gate, or the controlled SWAP gate. It’s action can be expressed as

(0, 1 , 2) ! (0, 1 , 2) (28)
(1, 1 , 2) ! (1, 2 , 1) (29)

Question 39. Verify that the Fredkin gate is reversible.

Question 40. Show that BQP ✓ EXP.

28

Quantum Information 9.3 Quantum Complexity

The first is No Cloning, since classical circuits often copy information around. This
turns out to not be an issue though, since we can still copy classical bits, which are just
pure standard basis states:

G G

0 G

The other problem is the reversibility of quantum circuits. For every quantum circuit,
there exists a reverse circuit that computes the inverse function. This means we need to
ensure that there is a reversible way to do classical computation, if we want to simulate it
on a quantum computer. Since we are using universal gate sets, that task is much simpler
as we just have to show that every gate in the gate set is reversible.

An important gate we will be using to show this is a three qubit gate called the Fredkin
gate, or the controlled SWAP gate. It’s action can be expressed as

(0, 1 , 2) ! (0, 1 , 2) (28)
(1, 1 , 2) ! (1, 2 , 1) (29)

Question 39. Verify that the Fredkin gate is reversible.

Question 40. Show that BQP ✓ EXP.

28

