* Algorithm Reference sheet

Algorithm 1 Period Finding

- 1: Start with $|0...0\rangle |0...0\rangle$ (We refer to these as first and second register, each have *n* qubits)
- 2: Apply $H^{\otimes n}$ on the first register to get $\frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} |y\rangle |0\rangle$
- 3: Apply U_f
- 4: Measure the 2nd register.
- 5: Ignore the 2nd register and apply QFT_N to the 1st register.
- 6: Measure the 1st register to get value *a*.
- 7: Postprocessing: Use *a* and *N* to find *k* and *r*.

Algorithm 2 Factoring

```
1: Pick x at random from \{2, \ldots, M-1\}
```

```
2: if gcd(x, M) \neq 1 then
```

- 3: gcd(x, M) is a non-trivial factor of M so we are done!
- 4: **else**
- 5: Use quantum Period Finding algorithm (alg 1) to find smallest *s* such that $x^s = 1 \mod M$.
- 6: Call this variable r.
- 7: **if** *r* is odd **then**
- 8: Start over..
- 9: **else if** $x^{r/2} = \pm 1 \mod M$ then
- 10: Start over..
- 11: **else**
- 12: $x^{r/2} \mod M$ is a non-trivial square root of $1 \mod M$
- 13: **end if**
- 14: end if

```
15: Postprocessing: Compute gcd(x^{r/2} - 1, M \text{ and } gcd(x^{r/2} + 1, M \text{ to find the factors of } M.
```

2 SCRATCH PAPER

* Scratch paper

3 SCRATCH PAPER

* Scratch paper

4 SCRATCH PAPER

* Scratch paper