
Module 3: Quantum Computation Computation 2: Quantum Search - Grover’s Algorithm

� Computation 2: Quantum Search - Grover’s Algorithm

13.1 The Search Problem

We’ve found a few settings of query complexity where quantum computers provide an exponential
improvement. A lot of these were very artificial settings, and there is a class of problems we are
interested in where the best we can do is exponential right now. This is the class of NP-complete
problems, so naturally the following question was raised. “Can quantum computers solve NP-
complete problems?”

Example 13.1. 3-SAT())

• Input: A Boolean formula) in 3-CNF form consisting of =-Boolean variables:)(G1 , G2 , . . . , G=).

3-CNF: (G2 _ G7 _ G3) ^ (G5 _ G7 _ G9) ^ · · · (98)

• Output: Does) have a satisfying assignment? That is, is there a way of setting each G8 such
that) evaluates to TRUE?

I can "prove" to you that there is a satisfying assignment by giving you an assignment of the
variables G1 , . . . , G= , which you just need to plug into the function and check for yourself.

Question 133. Let

)(G1 , G2 , G3 , G4) = (G2 _ G3 _ G4) ^ (G1 _ G2 _ G4) ^ (G1 _ G3 _ G4). (99)

What is)(1, 1, 1, 1)? What is)(1, 0, 0, 1)? Is) a YES instance of 3-SAT?

The above example is important because not only is it in NP, it is actually a problem in a subset
of NP problems called NP-complete. NP-complete problems are often referred to as "the hardest
problems in NP", and are an important set of problems because we know that an efficient solution
to any NP-complete problem would mean there is an efficient solution to every problem in NP! It is
generally believed that it is impossible to solve NP-complete problems in polynomial time using a
classical computer. We will continue the discussion in the setting of query complexity.

89

-

-

-

-

↳ YES
.

-

J

&

>

= - -

P (1
,

1
,

1
, 1)

= 11 1 n 0 = 0 X Not satisfying

9 (1 , 00; 1)
= 11(1) = 1 ~ Satisfying assgnment .

Es

If I can sole 35AT -> I can solel of E.

Module 3: Quantum Computation 13.1 The Search Problem

Per usual, we will have black-box access to the function 5 : {0, 1}= ! {0, 1} we are interested
in in the form of a unitary *5 :

*5 |Gi |Hi = |Gi |H � 5 (G)i . (100)

We are interested in deciding some property of the function. For this last setting, we are interested
in the search problem:

Definition 13.2 (Search Problem). Let 5 : {0, 1}= ! {0, 1}. Is there an = bit string G such that
5 (G) = 1?

This problem is interesting because any decision problem (including NP-complete ones) can
be formulated in this way. For example, if we have a 3-SAT instance we can set 5 (G1 · · · G=) =
)(G1 , · · · , G=). To simplify the analysis, we will first assume that 5 either has a unique solution or
no solution at all. In other words,

��{G| 5 (G) = 1}
�� = 0 or 1. (101)

In the case that a solution does exist, we will call the solution string 0.

Question 134. What is the classical query complexity for the above problem?

You may be wondering if this is too general for analyzing NP-complete problems, but there
is a widely believed hypothesis that a brute force search is the best we can do for 3SAT. In other
words, we believe that the lower bound shown above for general 5 holds for functions that are
NP-complete too. We now want to ask what kind of speed-up is possible if we use a quantum
computer in this setting.

90

-

For 3SAT
,
set f = &

-

-

f(a) =)
,
a is unique .

f(x) = 0 for all xFa.

2" queries

Module 3: Quantum Computation 13.2 Grover’s Algorithm

13.2 Grover’s Algorithm

Let |0i be the standard basis state representing the value such that 5 (0) = 1. We will also use the
notation

|#i := 1p
#

’
G2{0,1}=

|Gi (102)

to represent the uniform superposition state.

Question 135. How can we create the state in the above equation?

One key fact about this algorithm is that the state of our system will always stay in the space
spanned by |0i and |#i. In other words, for every state |Ei that this algorithm can be in, we can
express this state as a linear combination as follows:

|Ei = � |0i + � |#i (103)

Note that |0i and |#i are not orthogonal, so we cannot just measure in a basis that contains both
|0i and |#i.

Question 136. What is the overlap between |0i and |#i? Using what you found, draw the two
vectors, with |0i as a vector pointing upward, and |#i pointing in the right direction. What is the
probability of measuring |0i if we measure |#i in the standard basis?

91

N = 2

=
↑ ->

~Si

->

z --

-

(a) if ifj
< a(4) = Cat (x) [i(j)

= 0

= (a(x) 201111]↑ 123

D So ,d:
-

=

Module 3: Quantum Computation 13.2 Grover’s Algorithm

We can create an orthonormal basis that represents the same subspace by subtracting the |0i
component from |#i.

Question 137. Create a new state |4i that is orthonormal to |0i by subtracting the |0i component
from |#i.

The last preparation step we need is to express the angle between |4i and |#i. For very small
values of , it is known that

sin ⇡ . (104)

From this, we can conclude that the angle formed between |#i and |4i is approximately .

The main steps of the algorithm can be described purely geometrically. We will discuss how
to implement these steps later, but for now let’s build the intuition behind what the algorithm
is doing. I will use |Ei to represent the current state of the system. The algorithm starts with
|Ei = |#i. Here are the steps that we repeat:

1. Reflect |Ei over the |4i axis.

2. Reflect |Ei over |#i.

Question 138. Let be the angle between |Ei and |4i before applying the two steps above. What
is the angle between the two after we apply the two steps? How many times do we need to do this
to maximize the probability of seeing |0i?

92

|a]
>

123 v (2) - la
if (a) = []

↑ (24)

= li
sing =Y Y

& E-
-> le7

->

-

E -

1c]
la]

↑ 1277 = (v)-[# (e) e

One iteration adds 20 to the angle between 127 and1v).

a of ituations

(0 + 2 .20) = E
(2c +1)/u=

2 +)=

(Yo +2+)= =
"

= 0(5)

Module 3: Quantum Computation 13.2 Grover’s Algorithm

13.2.1 Implementing Reflections

How can we implement the reflections? To figure this out, it will help to think about how to
express the geometric action of these reflections mathematically. Suppose we have a state |Ei that
we want to reflect over some other state |)i.

Question 139. Write down |Ei as a superposition of |)i and |)?i. Write down the state |E0i after
the reflection is completed.

13.2.2 Reflection over |4i

The first reflection we need to do is over the |4i axis. That is, we want

|Ei = � |4i + � |0i (105)

|E0i = � |4i � � |0i (106)

(107)

In words, we want to multiply the |0i state by -1, and the rest of the states by +1. Remember that
0 is the unique bitstring satisfying 5 (0) = 1. We can summarize this action by

|Ei =
’
G

�G |Gi �! |E0i =
’
G

�G(�1) 5 (G) |Gi . (108)

Question 140. We know we can perform the above operation with access to *5 . *5 acts on = + 1
qubits. What state does this qubit need to be in for us to apply the phase of (�1) 5 (G)?

93

1) (v)
= ald + b(07) fald-b1pt

s
↑i
#

(() 1t i (G(-
*

(x) 1

=

41

xi

Module 3: Quantum Computation 13.2 Grover’s Algorithm

13.2.3 Reflection over |#i

The mapping we want to perform here is

|Ei = � |#i + � |#?i (109)

|E0i = � |#i � � |#?i (110)

(111)

where |#i = 1p
#

Õ
G
|Gi.

Since |#i is generated by applying = Hadamard gates, the following is true:

�
⌦= |0 · · · 0i = |#i () |0 · · · 0i = �

⌦= |#i . (112)

If we apply = Hadamard gates to |#?i, we get a state |)i which is a uniform superposition over
all states perpendicular to |0 · · · 0i. The goal is to now apply a phase of -1 to every standard basis
state which is not equal to |0 · · · 0i. I claim that the following 3 qubit circuit accomplishes this:

|G1i

|G2i

|G3i

|�i

- -

- -

- -

1 2 3

If input state is |000i:

If input state is not |000i:

94

(a)

=

↓ Ho

↑
Enplot => < 10) - Blo+

- -

Apply (1) to everything sets target to 1 if

that is 1 10) inputs are I

S j Nothing otherwise
.

-

10007 & = (111)) ->

D11117 & - 1000) It

(xix 2 x3) & KiX2Y3]

D(x,
5253] & (x

, x2x3]

110003 + B1000) -> -> < 1000+ 100*

11

< 100d - $1000

Module 3: Quantum Computation 13.3 Generalized Search

Question 141. What is the query complexity of Grover’s algorithm?

13.3 Generalized Search

What about the (more likely) case where there are multiple solutions? That is,��{G| 5 (G) = 1}
�� = " > 1. (113)

Assume (for now) that the number of solutions " is known. We would like to find any one of
these solutions. We again define two orthogonal states, the uniform superpositions of the solution
states and non-solution states respectively:

|)1i =
1p
"

’
G: 5 (G)=1

|Gi |)0i =
1p

� "

’
G: 5 (G)=0

|Gi . (114)

Then our starting uniform superposition state can be expressed as a weighted sum of the above
two states as

|#i =
r

� "

#

|)0i +
r

"

#

|)1i . (115)

Since we know ", we can select the number of iterations 2 such that

(22 + 1) ⇡ �
2 (116)

in the same way we did in the previous section. In the case where " << # , ⇡
q

"

#
, so the total

number of iterations required is $
✓q

"

#

◆
.

95

g

