
Module 3: Quantum Computation Computation 3: Quantum Fourier Transform and Shor’s Algorithm

� Computation 3: Quantum Fourier Transform and Shor’s Algorithm

14.1 RSA and Number Theory

"We know more than we did before. Let’s use that."

- Cypher

We’ve seen an example of private key cryptography when talking about quantum money, but
here we will be interested in public key cryptography. In such a scheme, there exists what is
called a public key, which anyone can easily know and uses to encrypt a message. On the other
hand, each receiving party will have their own private key, which is required to efficiently decrypt
a message.

In this section, we will take a look at the RSA protocol, which is one of the most commonly
used public key cryptosystems today.

The following is the description of the RSA protocol.

1. Choose two prime numbers ? and @.

2. Multiply them to form ".

3. Compute the "Euler function" of ",)(").

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26

4. Choose an encryption key 4 such that

• 1 < 4 <)(").
• gcd(4 ,") = 1 and gcd(4 , (? � 1)(@ � 1)) = 1.

5. Choose 3 such that
34(mod)(#)) = 1. (117)

• Public keys are 4 and ".

• Private keys are ?, @, 3.

If you know ? , @ , 4, you can use Euclid’s algorithm to efficiently compute 3.

To encrypt a message, we would use the following protocol. Let < be the plaintext message.
The cypher text 2 is computed by

2 = <
4 mod " . (118)

To decrypt the message, we simply perform

< = 2
3 mod " . (119)

96

y(MN) = y(m)P(v)

-

-> = p
. q .

Counts of numbers < M that

-> don't share a factor.
- M= 26 .

=2x

- 1 .

18 !
-

/Nd - 1 ! =- = 12
-

1 - 12 = 12 3 does not work

=>

be ged (3,
+2) = 3.

->
⑤ -

=> S

Le& = If you
can

factor M
,

you
can break RSA ! !

-

&

↑ -

D

Module 3: Quantum Computation 14.1 RSA and Number Theory

If an attacker intercepted the cypher text 2, it would be practically impossible to decode it
unless they knew what 3 was.

Question 142. Suppose the public keys are 4 = 5 and " = 26. If we encrypt the message "B" which
we will represent using the integer 2, what is the cypher text?

Question 143. Show that 3 = 17 is a valid private key to decrypt the message.

The computer science community believes that finding the plaintext < from the cyphertext
2 requires solving an exponentially hard problem (namely, factoring an unknown number ").
Knowing whether this is true or not has large implications for the security of information, leading
to lots of interest in the complexity of the factoring problem.

As usual, let’s take a look at how difficult it would be to factor numbers classically. Note that
when we analyze the hardness of factoring, we are interested in the number of digits used to
represent ", which is F = $(log "). So an efficient algorithm would mean an algorithm that runs
in polynomial time with respect to F = $(log ").

The trivial algorithm would simply try every number 9 2 [1,
p
"] and check if 9 divides ".

This would require $(2F) iterations.

Other known classical algorithms include

• Quadratic Field Sieve: $
⇣
22·

p
F

⌘

• Number Field Sieve: $
⇣
2<1/3

⌘

Though still exponential, these improvements were enough to require RSA schemes to go up from
512- to 768-bit encryption schemes to the sizes we see today (1024 to 4048 bits).

97

6+1
R

- -

↓ d In

22 = 25 = 32 = 6 - (F' ,

5
,
26)

mod 26

-

ed (God M) = J = 2

on 26

[
=>

-

M =
137927

W = 6 (of digits) ~ log .

M

[~ ↳ inputsize of our algorithms .

-

Module 3: Quantum Computation 14.2 Shor’s Algorithm

14.2 Shor’s Algorithm

In 1994, Peter Shor developed an algorithm to solve factoring on a quantum computer using just
poly(log ") gates. Note that this is not even the number of queries, it is the exact circuit size.

Going beyond RSA, another popular public-key cryptosystem is called Diffie-Hellman, which
requires solving the discrete log problem (also believed to be difficult for classical computers).
Shor’s algorithm for factoring is also able to solve discrete log.

Let’s first see Shor’s factoring algorithm, and we’ll dive into the components of it after.

Algorithm 1 qFactor(")
1: Pick G at random from {2, . . . ," � 1}
2: if gcd(G ,") < 1 then
3: gcd(G ,") is a non-trivial factor of " so we are done!
4: else
5: Find the smallest B so that GB = 1 mod ". Call this variable A.
6: if A is odd then
7: Start over..
8: else if GA/2 = ±1 mod " then
9: Start over..

10: else
11: G

A/2 mod " is a non-trivial square root of 1 mod "

12: end if
13: end if
14: Postprocessing: Compute gcd(GA/2 � 1)," and gcd(GA/2 + 1)," to find the factors of

".

A key subroutine in Shor’s algorithm is that of period finding. In a way, this algorithm shows
that factoring an integer can be solved if you know how to find the period of a function quickly.

The function we are searching for the period for is the following:

5G(B) := G
B mod " (120)

where gcd(G ,") = 1 and " = ? · @.

Before going into how to find the period, let’s show that knowing the period does indeed let
us know what the factors of " are.

98

[-

-

T- 4 M 3
= X" = I mod M

.

> I

10 3fxlshappens w/ prob. 3

(x+ - 1)(x
+ 2

+ 1) = 0

S I
-

> (b

[
->

↑

Module 3: Quantum Computation 14.2 Shor’s Algorithm

First, we need to confirm that 5G(B) defined above is indeed periodic.

Lemma 14.1. Let G, " be integers such that gcd(G ,") = 1. Then

G
B mod " (121)

is periodic in G.

Sketch. If we tried computing the powers of G mod ", since the function can have only " distinct
outcomes, if we take more than " powers we will eventually get a repeat.

Let 0 and 1 be two powers where the equation evaluates to the same integer. We can express
this mathematically:

Since gcd(G ,") = 1, G and " do not share any prime factors. Thus for the equality to hold, "
must evenly divide G

1�0 � 1:

G
1�0 � 1 = :

0
" (122)

G
1�0 = 1 + :

0
" (123)

) G
1�0 = 1 mod " . (124)

É

Furthermore, we can show that the period of the function is the smallest positive integer B such
that GB = 1 mod ".

In practice, finding a non-trivial square root of 1 mod " is sufficient for factoring.

99

-

X = 17
,

M = 199

fiz(s) = 17(mod(s) o3-65
--

period is 66 -

3

flbfat bra is multiple of

the period
.

& Look for b = S.y
x

*
= x* God M) = x

*
- x * = 0 God M)

x
* (xb-a

- 1) = 0 Godm)

x(xb- - 1) = k-M = k .

p
-

gI =

-

H using ged (x,
M) = 1

xb - 1 = k" M

Module 3: Quantum Computation 14.2 Shor’s Algorithm

Lemma 14.2. Given a composite number # and an integer G such that

G
2 = 1 mod # (125)

and
G < ±1 mod # , (126)

we can factor # .

Proof. By our assumption, we have that

G
2 � 1 = :# (127)

) (G + 1)(G � 1) = :# . (128)

Furthermore by our second assumption that G < ±1 mod # , neither G � 1 nor G + 1 is a multiple
of # . The product is some multiple of # , so what we conclude is that each of (G � 1) and (G + 1)
have some of # ’s prime factors. To find one of these, we simply compute

gcd(G + 1,#) (129)

gcd(G � 1,#). (130)

É

Example 14.3. Let # = 15. A number that satisfies the first condition is G = 11:

112 = 121 = 1 mod 15. (131)

We can also easily verify that 11 < ±1 mod 15. Now we compute the gcd of the pair of integers
around 11 with 15 to recover the factors:

gcd(12, 15) = 3 (132)

gcd(10, 15) = 5. (133)

We have successfully recovered the factors 3 and 5.

Note that for an application like RSA, the number # we are trying to factor will always be a
composite of two primes, meaning that the gcd will be sufficient for finding these numbers.

Question 144. Find a non-trivial square root of 1 mod 20.

100

->
-

-

-

-

[
-

- -

&
=

It is a sgroot
of 1 God 15

I mod 15

· 1P-1 = 0 mod It

-

(1-1) (11 + 1) = 0 mod 15

(1)=

Z

8 = I mod 21

(8 - 1)(8 + 1) = 0 mod 21

7 . 9 = 1 . 21 = k · 3 . 7
↓

gcd (7 ,
21) god (9 ,

21)
1)

"s X 3 = 2/

Module 3: Quantum Computation 14.3 Quantum Fourier Transform

14.3 Quantum Fourier Transform

Before studying the quantum period finding algorithm, let’s take a quick look at one of the key
pieces required. We begin by reviewing how to transition between the bit string and integer
representation. To compute the value of the bit string 11001, we multiply it as follows:

1 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20 = 16 + 8 + 1 = 25. (134)

More generally, if we have a string G = G1 · · · G= where G8 is the 8-th bit of G, we can write this as an
integer using the sum

G1 · 2=�1 + G2 · 2=�2 + · · · + G= · 20 =
=’

:=1
G: · 2=�: . (135)

Throughout this section, we will frequently take complex numbers to the power of integers,
and it will be useful to have a way to toggle between the integer representation of the power and
the bit string representation.

$G = $G1·2=�1+G2·2=�2+···+G=20 (136)

= $G1·2=�1 · $G2·2=�2 · · · · · $G= ·20 (137)

=
=÷

:=1
$G: ·2=�: (138)

One important reason we will be interested in complex numbers is because they are a great
tool for analyzing periodic functions. In particular, the #-th roots of unity give us a way to keep
track of the "period" in the way a clock would.

Question 145. Let = = 3. Let $ be the first 23-th root of unity. Compare the values $G and $G+1

for G = 101.

101

*
↑

noth root of unity.

wo =e

(rol" = (c) 2 - -2)
:

- ⑭
y

Module 3: Quantum Computation 14.3 Quantum Fourier Transform

Definition 14.4 (Quantum Fourier Transform). Let # = 2= . For G 2 {0, 1, . . . ,# � 1}:

• Standard basis state: A length # column vector with a 1 in the :-th location

|:i =

2666666666664

0
.
.
.

1
.
.
.

0

3777777777775

. (139)

• Fourier basis state ($ = 4
2�8/# is the first #-th root of unity):

| :̃i = 1p
#

266666666664

$0

$:

$2:

.

.

.

$(#�1):

377777777775

. (140)

The =-qubit Quantum Fourier Transform or &�)# is the transformation that performs

&�)# |Gi = | G̃i = 1p
#

#�1’
H=0

$G·H |Hi (141)

We can model the action of &�)# by the matrix

&�)# := 1p
#

266666666664

1 1 1 · · · 1
1 $ $2 · · · $#�1

1 $2 $4 · · · $2(#�1)
.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

1 $#�1 $2(#�1) · · · $(#�1)(#�1)

377777777775

. (142)

102

* of qubits
.

↑

--

<
Indexk.

n

T

multiplication,
-

& NOT dot product .

z =

&

timestaps .

↓

-

a frequencyn z 3&

N N N

D
r

amplitudes

Module 3: Quantum Computation 14.3 Quantum Fourier Transform

(a) Taken from Python Numerical Methods

Let’s get familiar with the Fourier basis by working through an explicit example.

Question 146. Write down the 1-qubit QFT matrix. Use the matrix to find all of the 1-qubit Fourier
basis states.

Question 147. Write down the 2-qubit QFT matrix. Use the matrix to find the first 2-qubit Fourier
basis state, | 1̃i.

103

Es
zu=

n
N = 2

Wa = ezi = e

ai
== I

AFT = e[w] = "i]

17 = QFTIO) = 17 IY7 = QET (1 = 1 ->

=

-

3
u N= 22 = 4

-

e
i

=

I - I

* :
I

I

- I cos(1·) + isin (1 . /2):] · F
cos(0.) + i sin (0 . (2)

I(- 11 cos (2.2) + i sin (2. /2)

Co((3 . /) + is in (3 . /2)

Module 3: Quantum Computation 14.4 Properties of the Fourier Transform

14.4 Properties of the Fourier Transform

The power of the QFT is in its ability to represent periodic sequences or functions. This may mean
that it is also effective at finding periodic structure in sequences as well! Before exploring this
thought, let’s look at some properties of the Fourier Transform.

Let me introduce some more notation we will use through the remainder of this section. We’ve
learned and practiced the mapping from a standard basis state to a Fourier basis state. What
happens if we apply the Fourier transform to a superposition of standard basis states?

Question 148. Consider the two qubit state

|#i = �0 |0i + �1 |1i + �2 |2i + �3 |3i . (143)

What is the result of applying the QFT to this state?

104

Module 3: Quantum Computation 14.4 Properties of the Fourier Transform

More generally, if we have an = qubit state

|#i =
#�1’
G=0

�G |Gi (144)

and apply &�)# to it, we get the following:

&�)# |#i = &�)#

#�1’
G=0

�G |Gi
!

(145)

=
#�1’
G=0

�G&�)# |Gi (146)

=
#�1’
G=0

�G

1p
#

#�1’
H=0

$G·H |Hi (147)

=
#�1’
H=0

#�1’
G=0

1p
#

�G$G·H

| {z }
f�H

|Hi (148)

We will call the amplitudes f�H the Fourier amplitudes. Using the vector notation, this means
the QFT is doing the following transformation:

266666666664

�0

�1
.
.
.

�#�2

�#�1

377777777775

&�)#�!

266666666664

f�0f�1
.
.
.

ù�#�2ù�#�1

377777777775

(149)

Question 149. Consider the state |#i from the previous question. What is f�3?

105

Module 3: Quantum Computation 14.4 Properties of the Fourier Transform

14.4.1 The Fourier transform converts between translation and phase

Let

|#i =
#�1’
G=0

�G |Gi (150)

and

|#+9i =
#�1’
G=0

�G |G + 9 mod #i =
#�1’
G=0

�G |G + 9i . (151)

The +9 state is simply the state we get by shifting the amplitudes cyclically by 9 positions. The last
inequality is just a notational difference, where we will abbreviate the mod # in this notation.

Question 150. Suppose we have the following two qubit state:

|#i = 1
2 |0i + 8

2 |1i +
p

3
4 |2i +

p
5

4 |3i . (152)

What is |#+1i?

Question 151. Apply the QFT to |#+9i.

106

-

&

=
-zu.

Module 3: Quantum Computation 14.4 Properties of the Fourier Transform

14.4.2 Fourier Transform of Factors

Suppose A is an integer that divides # (#/A is an integer). Define the state

|)Ai =
r

A

#

#

A
�1’

:=0
|:Ai . (153)

Question 152. Let # = 21 and A = 3. What are the amplitudes that appear in this vector? Draw
them in the figure below.

Proposition 14.5. Let A be an integer that divides # . Then,

&�)# |)Ai = |)
#/Ai . (154)

Question 153. Continuing the example from Question 42, what is |)
#/Ai?

Question 154. Still continuing the example from Question 42, what is &�)# |)Ai?

107

-
-

&

19)=3
= E((0 + 13) + 16) + 19) + 1m) + 15) +10)

10
[>

↓ 3
QFT2 , 197 = 197= 117) = =(10) + 17) + 14)

D

Module 3: Quantum Computation 14.4 Properties of the Fourier Transform

14.4.3 Periodic Superpositions with a Shift

The crux of Shor’s algorithm is the solution to the following problem: Suppose we have a periodic
superposition but with a shift: r

A

#

#

A
�1’

:=0
|:A + ;i . (155)

Can we find an algorithm to find A?

To further complicate the problem, every time we generate a new version of the state, the shift
constant ; will be different. This causes issues later, because when we use the QFT for factoring,
the offset does not allow us to cleanly divide # in the way that it does in Proposition 2.2.

Let’s formalize the problem. We consider starting with some state

|)Ai =
1p
B

B�1’
:=0

|:A + ;i (156)

where we have defined 0 ; < A and B =
⌅
#

A

⇧
. There are two challenges we will have to resolve to

correctly figure out what A is.

1. # will generally be a power of 2, meaning that A does not divide # most of the time.

2. The shift ; causes the QFT to not work as cleanly.

108

-

10 . r + 17 Worth -

l= 1 i in i
v

= 3

N = 21 *

[
.

M- M . M. . . .

Module 3: Quantum Computation 14.4 Properties of the Fourier Transform

Proposition 14.6. Consider applying an =-qubit QFT to some state

|)Ai =
1p
B

B�1’
:=0

|:A + ;i . (157)

We can express this state as

&�)# |)Ai =
#�1’
0=0

f�0 |0i . (158)

If we measure this output state, then with high probability we measure a value 0 such that

1.
��
0 � :

#

A

�� 1
2 for some :.

2. gcd(: , A) = 1.

The first property can be rewritten as
���� 0
#

� :

A

���� 1
2# . (159)

From our measurement result, we know what 0 is, and # depends on the system size. What the
above equation is saying is that 0

#
is a very close approximation of :

A
. We can use this information

to find : and A, independent of what ; is!

109

- =

- &

& After QIT e measure,
we see

(a)

we know stLi

Module 3: Quantum Computation 14.5 Period Finding

14.5 Period Finding

Let’s see a period finding algorithm

Suppose we have some function 5 : {0, . . . ,# � 1} ! {0, . . . ," � 1} or alternatively in the
bitstring notation, 5 : {0, 1}= ! {0, 1}< . Here, we’ve defined the integers such that # = 2= and
" 2< . This function will also have the property that for some integer A,

5 (G) = 5 (H) , G � H is an integer multiple of A " <
p
. (160)

Given quantum access to this function via a unitary *5 , the goal is to find A.

Example.

This problem is interesting because there is no known efficient classical algorithm! The best
we can do is a brute force search for "collisions" 5 (G) = 5 (H), which on average will require ⇠ 2=/2

time.

Question 155. Consider the function 5 : {0, 1}4 ! {0, 1}4, where

5 (B) = 3B mod 16. (161)

What is the period of 5 ?

110

*
A

T

-
& I M

11 27% 16

--

E I Il 8) % 16 *
A -

53
9

67 11 i
i s

-

20, ...,
157 - [0 , ...,

157 Birthday paradox.
& -

-

-

=>

4 ↑

-

After applying Uf :

3 9 11
13

I

(10) 1 fo + 11) (f(x) + 12) (f(2)) + 11) (f(3x + (4) (f(x)) + 15) (15)

a Il

+ 167 (f(x)) + ... + (15) (f((5))).

M

Module 3: Quantum Computation 14.5 Period Finding

I’ll begin by just writing out the algorithm, and we will go over the analysis after seeing it. The
algorithm will use two registers, the first using = qubits (to store numbers mod #), and the second
register will have dlog "e qubits to store numbers mod ". We will also have quantum access to
the function 5 via a unitary *5 which has the action

*5 |Gi |0i = |Gi | 5 (G)i . (162)

Algorithm 2 Period Finding
1: Start with |0 . . . 0i |0 . . . 0i
2: Apply �

⌦= on the first register to get 1p
#

Õ
#�1
H=0 |Hi |0i

3: Apply *5

4: Measure the 2nd register.
5: Ignore the 2nd register and apply &�)# (mod #) to the 1st register.
6: Measure the 1st register to get value 0.
7: Postprocessing: Use 0 and # to find : and A.

|0i

.

.

.

|0i

|0i

.

.

.

|0i

= qubits

�

*5

&�)#
H

�

< qubits f(y)

Let’s go through each step starting at 3 to see what the state is. At step 3, we will have prepared
the state

1p
#

#�1’
H=0

|Hi | 5 (H)i (163)

Now recall that the function 5 (H) is periodic in A, meaning that for every 5 (H), there will be A inputs
that map to it.

111

((
8 : return V

(10) + (1) + 127 + 13) - ... + (N-x)(0)

&

I

Module 3: Quantum Computation 14.5 Period Finding

Question 156. Consider the function we used in Question 45. If we had unitary access to this
function and measured |9i in the second register, what is the state of the algorithm?

More generally, measuring the second register will allow us to collapse into a superposition
of inputs that all map to the same state. More concretely, suppose we measured the value F in
the second register. Then the first register will be an even superposition of all | 9A + ;i such that
5 (9A + ;) = F, and 0 9 < b #

A
c, 0 ; A � 1. We can write this in ket notation too:

1p
B

B�1’
9=0

| 9A + ;i |Fi B :=
�
#

A

⌫
. (164)

We can safely ignore the second register for the remaining analysis, because the two registers are
now in a product state.

By Proposition 2.3, we know that applying a QFT to this state and measuring will allow us
with high probability to observe a state 0 such that

����0 � :

#

A

���� 1
2 gcd(: , A) = 1. (165)

The above equation can be combined with our assumption that A <
p
to get

���� 0
#

� :

A

���� 1
2# 1

2A2 . (166)

We will be using continued fractions to find : and A.

We will assume that gcd(: , A) = 1. To analyze the final step, let’s look at how continued
fractions works. Let ✏ = 0

#
. We know that with high probability,

����✏ � :

A

���� 1
2A2 . (167)

The continued fractions representation of a real number is a sequence of integers 00 , 01 , . . . , 0=

as:
✏ ⇡ 00 +

1
01 + 1

02+ 1
.
.
. 1
0=

(168)

We can clip this sequence at some 0: to get an approximation of ✏. We will define the %: and &:

as the numerator and denominator we get respectively for the approximation of ✏.

112

- --

(12) (9) + 16719) + 110)(9) + 114)(9)

= (12) + 16) + (10) + 114))(9) = E14 + 2719.

6

L

E

Module 3: Quantum Computation 14.5 Period Finding

Question 157. Let ✏ = 7.27. Find the continued fractions representation of ✏. What is %3 and &3?

Once the continued fractions representation is found, we get a series of approximations to ✏:

%0
&0

,

%1
&1

,

%2
&2

, · · · , %=

&=

(169)

such that
&0 < &1 < &2 < · · · < &= . (170)

Each of the &9’s are candidates for A, and with access to the function 5 we can directly test the =

candidates to see if we have the correct period. We know this will happen by the theorem stated
below.

Theorem 14.7 (Proven in Nielsen and Chuang). If
��✏ � :

A

�� 1
A

2 , then : = %9 and A = &9 for some 9.

Our algorithm will try each one and take the smallest &9 such that

G
&9 = 1 mod # . (171)

We end the section with two important facts:

• If ✏ is a rational number, eventually for some =, %=

&=

= ✏.

• %9

&9

is the best approximation to ✏ by any ratio of integers whose denominator is &9 .

113

v = 7
.

27 = 7+ = 7+ = 7 + -57
27

Approxict u=
U a2 :

T·
XQ,

T

->
-

fuz(s) = 47 mod 667

fy(s) = x modM .

e

Ex/ Suppose N = 1024
,
M = 667 x

=47
,

a
= 402

/

Approximate
= [0 ; 2

, 31 ,
4

,
1

,
3
,

1
,
3]

I,,,,
a M M ↑ & fy(0) = 1 mod 667

Q
, Q2 Q3 Q Q5 Q6 fy (28) = 1 mod 667 .

Module 3: Quantum Computation 14.5 Period Finding

Question 157. Let ✏ = 7.27. Find the continued fractions representation of ✏. What is %3 and &3?

Once the continued fractions representation is found, we get a series of approximations to ✏:

%0
&0

,

%1
&1

,

%2
&2

, · · · , %=

&=

(169)

such that
&0 < &1 < &2 < · · · < &= . (170)

Each of the &9’s are candidates for A, and with access to the function 5 we can directly test the =

candidates to see if we have the correct period. We know this will happen by the theorem stated
below.

Theorem 14.7 (Proven in Nielsen and Chuang). If
��✏ � :

A

�� 1
A

2 , then : = %9 and A = &9 for some 9.

Our algorithm will try each one and take the smallest &9 such that

G
&9 = 1 mod # . (171)

We end the section with two important facts:

• If ✏ is a rational number, eventually for some =, %=

&=

= ✏.

• %9

&9

is the best approximation to ✏ by any ratio of integers whose denominator is &9 .

113

